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Abstract

Disorganized agricultural value chains often prevent the transmission of quality in-
centives to upstream farmers, especially when quality is costly to observe at the farm
gate. This study develops digital traceability systems for Kenyan dairy cooperatives and
introduces an innovative quality monitoring method, using Bayesian statistical models
to infer individual milk quality from pooled samples and reduce testing costs. I reveal
randomly selected farmers’ milk quality either by the model or by random tests to both
cooperatives and farmers. I find that the farmers in the model group reduce the added
water by a significant 21.9% compared to the control group, while the farmers in the
random test group show an insignificant 12.6% reduction. In addition, treated farmers
who consistently provide high quality milk receive higher credit limits from the cooper-
ative and use more credit for animal feed. A back-of-the-envelope calculation suggests
that the model offers cost-effective quality improvement, making it a promising tool for
continuous quality monitoring and scalable implementation.
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1 Introduction

Improving the quality of agricultural products is often considered an important step in the
process of structural transformation, moving farmers from subsistence farming to market-
driven, commercial agriculture. However, disorganized supply chains with many layers of
intermediaries often prevent the transmission of quality incentives to upstream farmers,
especially when quality is unobserved at the farm gate, which discourages farmers from
upgrading quality. A growing literature finds that quality certification can reduce this market
friction caused by asymmetric information and improve product quality (Bernard et al.
2017; Macchiavello and Miquel-Florensa 2019; Abate et al. 2021). The cost to get certified,
however, can be high and not financially feasible for smallholder farmers (Bergquist and
Startz 2024), or even farmers’ cooperatives (Aggarwal et al. 2024b). Therefore, in markets
where the producers are mainly smallholders and products are aggregated by intermediaries,
downstream buyers typically certify the quality in bulk after aggregation. Although studies
show that producers respond to quality incentives and improve product quality (Atkin et al.
2017; Hansman et al. 2020; Magnan et al. 2021; Bold et al. 2022; Hoffmann et al. 2023;
Park et al. 2023; Rao and Shenoy 2023; Deutschmann et al. 2024), when quality is only
certified further downstream in the value chain, whether and how the quality incentives are
transmitted to upstream producers remain open questions.

This paper explores a new potential solution to enhance accountability and incentivize quality
improvement in value chains: establishing a traceability system that enables precise rewards
for farmers who deliver high-quality products, particularly when quality is difficult and costly
to observe at the farm gate. Focusing on the Kenyan dairy value chain, this study examines
the impact of introducing digital traceability systems among dairy cooperatives. I test a
novel quality measurement system derived from the digital traceability system, comparing
it to random farm-gate testing and a control group. I find that cooperatives and farmers
respond to both quality monitoring methods, and the milk quality improves at the endline.
The digital traceability system outperforms conventional random testing in most metrics.
Additionally, farmers in both treatment groups who consistently provide high-quality milk
get a higher credit limit from the cooperative and use more credit for animal feed at the
endline.

In the Kenyan dairy (formal) value chain, farmers are selling their milk to dairy cooperatives.
Dairy cooperatives hire milk transporters to collect milk from farmers. Milk is not tested
at this point due to the prohibitively high testing cost (both time and monetary), and thus,
farmers are paid based solely on quantity. Transporters usually aggregate the milk from
multiple farmers to fill larger milk cans, which are then transported to collection centers.
The collection centers pour the milk together into cooling plants (usually containing 10 to
100 of these cans). Cooperatives then sell the aggregated milk to processors who either
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accept it with a premium price, accept it without a premium, or reject it based on their
comprehensive milk testing results.1 If the milk is rejected, the entire vat of milk has to be
destroyed by law, and the dairy cooperative will bear the loss.2 Therefore, quality incentives
exist in the downstream markets but are not transmitted to the upstream farmers, which
leads to a low-quality, low-price equilibrium.

To effectively address this market failure and evaluate testing schemes that mitigate it, it is
important to recognize that milk quality defects have both farmer-specific and time-varying
components. To be specific, milk processors check water adulteration, butterfat, and bacteria
when buying milk in the study region. Water adulteration is purely a day-to-day choice, and
different farmers have different tendencies to add water to the milk. Butterfat is determined
by cow breed type (fixed) and animal feeds (varying), and it could also be affected by added
water (varying). Lastly, for bacteria, some farmers might not have the knowledge (fixed) of
milking hygiene, while others, even if knowledgeable, find it costly (varying) to follow the
recommended milking hygiene protocol. If milk quality is solely determined by fixed, farmer-
specific characteristics, a one-time test could effectively reveal this information. However,
in this setting, milk quality also depends on variations in farmer behavior, indicating that a
one-time test would be insufficient to fully capture these dynamics.

In the context of dynamic moral hazard problems with limited monitoring resources, random
monitoring is largely studied in the existing literature (Jin and Leslie 2003; Varas et al. 2020;
Ball and Knoepfle 2024). Alternatively, this paper examines a new approach to still monitor
daily, but at the aggregate level.3 In principle, by testing aggregated milk cans with recorded
information on which farmers contributed to each can, I could infer individual milk quality.
Since the composition of each container varies daily, the can-level testing outcomes would
reflect these differences, enabling individual-level assessments.

To monitor farmers’ milk quality every day, I developed a digital traceability system to
track the milk throughout the value chain so the system can provide a basis for continuous
monitoring. This traceability system helps to record who contributes to each aggregated milk
can and their corresponding contribution percentages. In addition, I test these aggregated
cans when they arrive at the cooling plant for several days. Using the aggregated can-level
testing data and can composition data, I developed novel Bayesian statistical models to infer
whether individual farmers produce high- or low-quality milk. The model-predicted quality

1The reason is that high-quality milk can be used to produce high-value products like buttermilk and
yogurt. Medium-quality milk is limited to use in ultra-pasteurized liquid packets, but low-quality milk cannot
be traded by law.

2Note that this extreme case exists, but is uncommon.
3Pooled group monitoring is also commonly used during the severe COVID time back in 2021 and 2022,

especially in China, when testing is needed every day until all the positive cases are identified in the whole
community.
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shows a high correlation with the one-time milk test among 940 dairy farmers in rural Kenya.

To test both the random monitoring and model detection in this dynamic moral hazard
setting, I run an individual-level randomized controlled trial with 940 farmers from coopera-
tives in two counties in Kenya to provide randomly selected farmers’ milk quality information
either by the model or by individual tests to dairy cooperatives, as well as to farmers them-
selves. I find that cooperatives react to the quality information provided to them; they train
low-quality (butterfat and bacteria) farmers and talk to farmers about water adulteration.
Both cooperatives chose to have a conversation with low-quality farmers first without impos-
ing any real consequences during the first two rounds of quality monitoring and information
sharing. After the third round, a small number of farmers who ignored the warning and
continued the practice of diluting milk with water had a portion of their payment temporar-
ily withheld.4 As a result, model group farmers had a significant 21.9 percent reduction
in added water compared to the control group, and individual test group farmers had an
insignificant 12.6 percent reduction. A back-of-the-envelope calculation indicates that this
model delivers a greater reduction in added water per dollar spent on testing. Moreover, it
reduces the time required to collect individual milk samples in the field and provides can-
level quality information to distinguish good milk from bad milk before mixing occurs at the
cooling plant. These benefits highlight the potential of this new quality monitoring approach
as a superior method for continuous milk quality monitoring and regulation.

I find no significant effect on bacteria and the absolute level of butterfat. One possible
reason is that the baseline level of butterfat is already high, and even though I do not
find significant effects on the average butterfat level, there are significantly 11% and 10%
fewer farmers failed the minimal required national standards of butterfat in the random
tests group, and model group correspondingly, compared to the control group. Training
alone without incentives seems only to reduce the probability of farmers failing the minimal
required national standards of butterfat and has no effect on the absolute butterfat level
and bacteria. This is consistent with Park et al. (2023) who find that training helps in
quality upgrading for dragon fruit farmers in Vietnam, and its effects are much larger when
accompanied by incentives from exporters. In fact, I observed a significant reduction in the
probability of farmers failing the minimal required national standards of bacteria after the
second round of information sharing, but the effect disappeared after the third round. This
suggests that cooperatives will need to provide clear quality incentives to farmers to have a
long-lasting effect.

In addition, treatment farmers who never add water get a higher credit limit from the
cooperative and use more credit for animal feed, as the cooperative believes that these

4All payments were restored later on; see the detailed discussion in Appendix Section B.
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farmers are more trustworthy and more likely to repay loans. This result highlights how
quality information can facilitate credit allocation along the value chain, especially when
quality parameters reflect borrowers’ moral standards. It extends beyond traditional credit
checks, which primarily assess repayment ability, by linking quality metrics to borrowers’
willingness to repay. This aligns with Casaburi and Reed (2022), who demonstrate that
cocoa traders in Sierra Leone, when provided with quality incentives, pass on some of these
gains to farmers through in-kind credit.

This paper contributes to several strands of the literature. First, it speaks directly to the
growing literature on quality certification. As Akerlof (1970) first pointed out theoretically,
asymmetric information about product quality can lead to a “lemons” market, negatively
affecting the welfare of market participants. Later on, Viscusi (1978) shows that a system of
quality certification can help to mitigate this issue. This study directly engages with the ex-
panding literature on quality certification, including Bernard et al. (2017), which studies the
effect of informing villagers about upcoming onion quality certification in Senegal and finds
improvements in quality. Macchiavello and Miquel-Florensa (2019) exploits the staggered
roll-out of the Quality Sustainability Program (which includes price premium on quality,
extension services, and access to inputs for plot renewal altogether) in the Colombian coffee
sector to show that eligible farmers produced better quality coffee on average in response
to this program. Bai (2024) randomizes stickers to differentiate the quality of watermelons
at the sellers’ discretion and finds that retailers were able to sell the laser-cut labeled (for
higher quality) watermelons to consumers at a higher price. Other ongoing studies include
Abate et al. (2022) about wheat certification in Ethiopia; Bergquist and Startz (2024) about
quality testing of honey in Ethiopia; as well as Aggarwal et al. (2024b) about cassava cut-
tings certification in Rwanda. The current study also contributes across this spectrum but
is different from the perspective that the quality certification at an aggregate level is already
there downstream in the value chain in my study, and quality certification at a disaggregate
level would be more like a quality “audit”, as it won’t certify individual producers’ product
quality until the aggregate quality is found low.

This study also relates to another strand of literature on buyer-driven upgrading, which
links sellers to the market paying a quality premium. This includes Bold et al. (2022),
which provides smallholder farmers with training and access to a high-quality maize market
in Uganda at the village level, which led to large improvements in quality, productivity,
farm gate prices, and thus profits. Atkin et al. (2017) connects rugs producers in Egypt
to foreign buyers paying a premium for higher quality rugs at the producer level and finds
that producers improved both quality and productivity. Hansman et al. (2020) finds that
fish meal exporters in Peru upgraded the quality when access to high-quality export markets
was improved. Another ongoing project in Rwanda is also in this area: Aggarwal et al.

5



(2024a) is evaluating the effects of providing farmers with access to maize processors (who
require higher quality standards and pay higher prices than those offered by local markets) on
their input decisions. Buyer-driven upgrading can also be achieved by directly incentivizing
quality based on existing trading relationships. This includes Hoffmann et al. (2023), which
offers an experimental subsidy for farmer groups in Kenya for maize that meets aflatoxin
standards and finds a doubling of investment in a bio-control technology. In the dairy sector,
Rao and Shenoy (2023) provides collective price incentives for aggregated milk quality at the
village level in India and finds an improvement in quality, given that the management team
can control the information disclosure. My study is different in the sense that Kenyan dairy
cooperatives have already linked to processors paying a premium for higher quality, and I
am not increasing the quality premium level in the existing training relationship. Instead, I
am focusing on the further transmission of quality incentives to upstream farmers.

To study the transmission of quality incentives to farmers, an ongoing project by Bai et al.
(2024) gives quality incentives to coffee traders in Uganda at the parish market level to see
whether it can transmit to farmers through market competition in sourcing high-quality cof-
fee cherries. This approach could be effective when quality attributes are at least partially
observable (Do Nascimento Miguel 2024). Alternatively, my study focuses on establishing
a traceability system along the value chain and evaluates an innovative quality monitoring
method based on Bayesian statistical models, which can work when quality is completely un-
observable. Bai (2024) finds that one year after the intervention, all retailers stopped sorting
and labeling because the cost of the laser technology for an individual seller was prohibitive.
Indeed, as Abate et al. (2021) points out as one of the four necessary conditions for quality
certification to succeed, the cost-benefit of quality certification is critical to sustainability.
A back-of-the-envelop calculation suggests that the model provides a cost-effective way to
improve quality, making it a scalable tool for continuous quality monitoring.

Taken together, the intellectual merit of the study is three-fold. First, different from most
quality certification studies, this study would not certify individual producers’ product qual-
ity until the aggregate quality is found low, which is potentially more suitable in the market
where the producers are mainly smallholders, and products will be aggregated by interme-
diaries. Second, this paper is unique in its focus on the transmission of quality incentives to
upstream producers through an innovative quality monitoring method based on traceability
systems and Bayesian statistical models, which can potentially reward farmers more pre-
cisely for providing high-quality products. Third, this study establishes a quality monitoring
system together with the central actor in the market, in my case, the dairy cooperatives. The
system is cost-efficient and is likely to be durable and scalable due to the existing long-term
and stable relationship between dairy farmers and cooperatives.

The rest of this paper is organized as follows. Section 2 explains the context and traceability
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system. Section 3 describes the Bayesian statistical models of detecting individual farmers’
milk quality; Section 4 describes the experimental design; Section 5 presents the experimental
results; and Section 6 concludes.

2 Context

2.1 Kenyan Dairy Sector

The empirical setting is the Kenya dairy value chain. The dairy sector is one of the largest
agricultural sub-sectors in Kenya (KIPPRA 2018); it accounts for more than 4 percent of
GDP and 12 percent of the agricultural GDP (KNBS 2019). According to the national survey
Kenya Integrated Household Budget Survey (KIHBS) 2015/16, among 13,086 households
surveyed, 57 percent of them own at least one cow in Kenya.5

The national long-term strategy, Kenya Vision 2030, has acknowledged that the dairy sector
is a key agricultural sub-sector and wants to realize a significant increase in exports of milk
and dairy products. Currently, only a small fraction of Kenya’s milk production is exported,
and a number of trade conflicts have arisen when regional importing countries rejected milk
products processed in Kenya in recent years on the grounds that Kenya’s raw milk was
of insufficient quality. Kenya’s raw milk is documented to be of low quality and does not
meet national and international standards due to water adulteration, low butterfat, and
high bacterial load (Nyokabi et al. 2021; Ondieki et al. 2017; Ndungu et al. 2016). This is
consistent with as shown in Panel B of Table 1, among the milk samples of 940 farmers from
two dairy cooperatives in two different counties, 47% of them failed the minimally required
standards on added water posted by the government (Kenya Bureau Of Standards (KeBS)6).
Compared to added water, dairy farmers are doing better on butterfat and bacteria: 16% of
them failed on butterfat, and 23% of them failed on the bacteria. Overall, 62% of farmers’
milk fails at least one of the KeBS’s requirements on water adulteration, butterfat, and
bacteria. A likely reason for low milk quality is that individual farmers face weak incentives
to produce high-quality milk.

In the Kenyan dairy (formal) value chain, farmers are selling their milk to dairy cooperatives.
Dairy cooperatives hire milk transporters to collect milk from farmers. Milk is not tested at
this point, however, beyond a simple acceptance test (organoleptic tests: sight, smell, or taste
or some simplified version of density tests) due to the prohibitively high cost (both time and
monetary) of comprehensive milk tests, and thus, farmers are paid based solely on quantity
once they pass the acceptance tests. As Figure A1 shows, transporters usually aggregate the

5The number is slightly higher for rural households: 59 percent of rural households own at least one cow.
6The KeBS standards require milk to have less than 4% added water, at least 3.25% butterfat, and grade

of 2 or above for bacteria. Milk that fails any of three quality standards is illegal to trade.
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milk from multiple farmers to fill larger milk cans, which are then transported to collection
centers. The collection centers pour the milk together into cooling plants (usually containing
10 to 100 of these cans) for sale to processors. These processors then perform comprehensive
milk quality tests. Brookside Dairy Limited (the biggest dominant milk processing company
in Kenya, which controls 45 percent of the dairy market as of January 2016) is actively
buying raw milk from cooperatives in the study region and always classifies milk into three
categories based on the milk quality testing results: (1) accept the aggregated milk with a
premium price; (2) accept it without a premium price; or (3) reject it.7 The reason is that
high-quality milk can be used to produce high-value products like buttermilk and yogurt.
Medium-quality milk is limited to use in ultra-pasteurized liquid packets, but low-quality
milk cannot be traded by law. If the milk is rejected, the entire vat of milk has to be
destroyed by law, and the dairy cooperative will bear the loss. Therefore, quality incentives
exist in the downstream markets but are not transmitted to the upstream farmers, which
leads to a low-quality, low-price equilibrium.

2.2 Time-varying Milk Quality

To effectively address this market failure, it is essential first to determine whether quality
defects are specific to individual farmers or vary over time. If milk quality is indeed farmer-
specific, a single test could be sufficient to reveal relevant information. However, if milk
quality fluctuates over time or is influenced by both farmer-specific and temporal factors,
relying on a one-time test could result in both Type I and Type II errors.

First, I investigate the milk quality fluctuation at the aggregated can-level. Note that for
the first round of quality monitoring at baseline, I tested the aggregated cans when they
arrived at the cooperatives continuously for several days without interacting with individual
farmers8. The two panels in Figure 1 display the average levels of added water and butterfat
at the aggregated can-level for two counties, accompanied by 95% confidence intervals. The
red dotted line represents the minimum national standards set by the KeBS, while the
green dotted line indicates the processor’s quality bonus thresholds. In the absence of the
intervention, milk quality fluctuated over time but at different levels. If aggregated can
samples are collected on Day 1 or Day 2 in Nyeri County, the one-time test results indicate
that the average milk quality for added water meets the KeBS standard. However, if samples
are taken between Day 4 and Day 13, the results show that the average milk quality for added

7The Brookside’s quality bonus criteria is that the milk has less than 2% added water, more than 3.8%
butterfat, and a grade of 5 or above for bacteria. The highest bonus cooperatives can get is 2Ksh, which is
close to 6% of the base price of 45 Ksh on average.

8During the first round of quality monitoring at baseline, individual milk samples were collected from
farmers exclusively on the final day of can-level testing. This was done to validate the model’s predictions
after getting the farmers’ consent for milk testing. In subsequent monitoring rounds, however, milk samples
were randomly collected throughout the monitoring periods rather than being restricted to the final day.
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water fails to meet the KeBS standard. On Days 12 and 13, the 95% confidence intervals for
the two counties overlap, suggesting that a random sample taken in both counties could lead
to the conclusion that Embu County has less added water than Nyeri County. Nonetheless,
Embu County demonstrates consistently better performance on most days compared to Nyeri
County.

Second, the milk quality shows greater temporal variability at the individual farmer level.
It is not an easy task to examine the milk quality at the farmer level since the action of
taking farmers’ milk samples continuously for several days will likely change their behavior
until the testing ceases. Conveniently, several farmers with large milk volumes can fill the
50-liter aggregated cans by themselves without mixing with anyone else. This creates an
opportunity to observe their milk quality over time by testing the aggregated cans instead of
their individual milk. I plot the milk quality time series of the farmers whose milk filled the
aggregated cans alone and showed up for more than five days in the two panels of Figure 2.

Figure 1: Can level Milk Quality Fluctuation within the Same Monitoring Period
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Notes: This figure illustrates the average aggregated can-level milk quality fluctuations over time with 95%
confidence intervals during the first round of quality monitoring at baseline. During this round, aggregated
cans were tested continuously over several days upon arrival at the cooperatives, with no direct interaction
with individual farmers.

Figure 2: Farmer level Milk Quality Fluctuation within the Same Monitoring Period
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Notes: This figure illustrates farmer-level milk quality fluctuations over time. This specifically highlights
the milk quality of farmers whose milk exclusively filled 50-liter aggregated cans without mixing with others,
enabling their quality to be monitored through can-level testing without direct engagement. Notably, milk
quality shows greater temporal variation at the farmer level compared to the aggregated can level.
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As shown in the time series plots in Figure 2, farmers’ milk quality fluctuates over time but
at different levels.9 Farmer 2 is clearly a different type of farmer compared to Farmer 1 and
Farmer 3 in terms of added water, for example. Therefore, there are both the farmer-fixed
component and the time-varying component of the quality defects. It is important to note
that if I take individual milk samples from Farmer 1 and Farmer 2 on Day 5, the one-time
testing result will show both farmers are “normal” type10 of added water; if I take individual
milk samples from them on Day 10, the one-time test result will show Farmer 1 is “bad” type
and Farmer 2 is “good” type of added water. That said, farmers’ milk quality types are not
set in stone, and one-time tests might not be sufficient to reveal the quality information for
all days. One-time tests can reflect the perfect information only for the days when farmers’
milk samples have been taken and tested, but not on other days. It fails to fully capture the
dynamics of the milk quality.

2.3 Digital Traceability System

For this dynamic moral hazard problem, I established a traceability system to trace the
milk throughout the value chain so it can provide a basis for continuous monitoring on a
daily basis. As discussed above, when milk is aggregated by transporters, it is collected into
cans, which include the milk from about 3-10 farmers. Farmers’ milk volume and which
cans they fill vary every day. To establish a milk traceability system, I first assign a unique
identification number to each aggregated milk can, as is shown in Figure A2, and then link
farmers’ unique member IDs to specific milk cans for every day’s milk delivery. Specifically,
I give milk transporters basic smartphones with a digital app installed; then, as Figure A3
shows, the transporters use the digital app to record the date, time, farmers’ member IDs,
aggregated milk can IDs, the milk volume, transporter name, collection route, and cooling
plant every time they collect milk from farmers. Cooperative staff help to check the data
and upload it to the server when transporters drop the milk at the cooling plant so that I
can get access to the data every day. At the end of the study, smartphones are given to the
transporters as compensation for their time. This traceability system helps to record who
contributes to each aggregated milk can and their corresponding contribution percentages,
which are used in the Bayesian statistical models.

When collecting the milk, transporters pour the milk to the aggregated containers on the
truck, as is shown in Figure A4. Transporters are advised to pour farmers’ milk into different
aggregated containers randomly, which adds more variation to the can level composition

9Added water is primarily a day-to-day choice (time-varying); butterfat is determined by breed type
(farmer-specific in the short-run) and animal feed (time-varying), and butterfat could also be affected by
added water (time-varying).

10I define milk which meets the national standards but fails the processor’s bonus standards as “normal”
type; milk fails the national standards as “bad” type; and milk meets the processor’s bonus standards as
“good” type.
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and improves the model performance. Specifically, before departing for milk collection, the
aggregated containers are arranged sequentially on the truck according to their can IDs. In
the field, milk from the first farmer is poured into the first can, the second farmer’s milk
into the second can, and so on. Once all the aggregated cans have been filled with milk
from at least one farmer, a new round of pouring begins. During this round, transporters
randomly select a starting can and then proceed sequentially through the containers. This
process ensures that the neighboring farmers do not consistently mix their milk (e.g., the 1st
and 2nd farmers), and it also prevents cases where the 1st and 23rd (if there are 22 cans in
total) farmers’ milk is always mixed in the same container.

3 A Bayesian Model of Quality Estimation

In addition to the traceability data, I tested these aggregated cans when they arrived at
the cooling plant for several days.11 As Figure A5 shows, before collecting samples from
the aggregated cans, the field team used a plunger to thoroughly mix the milk by stirring it
from top to bottom until it was well combined.12 Then the field team pours the milk into
small sample tubes with unique sample IDs and stores them with ice bricks to keep the milk
fresh, while shipping to the milk testing lab, as is shown in Figure A6. Then, I link these
aggregated milk container level quality test results to each farmer so that I can generate the
inputs for model prediction. To be specific, I have a matrix of each farmer’s contribution
percentage for each aggregated can, and the corresponding aggregated can test results on
different days.

Transporters are advised to pour farmers’ milk into different aggregated containers randomly,
which adds more variations to the can level composition. The model utilizes the variation
from the (1) farmers’ milk volume; (2) which aggregated cans they fill; (3) which other
farmers are contributing to that can; and (4) corresponding aggregated can test results vary
each day. The theoretical aggregated can quality should be the weighted average of the
individual farmers’ milk quality in the can.13

Compared to typical machine learning models or other methods14, the main benefit of using
the Bayesian model is that (1) it utilizes the prior knowledge that added water is a non-

11Until the number of can-level observations was 2 times the number of different farmers. This was to
ensure that the model converges and performs well, as advised by results from a pilot study.

12This is proved to be necessary and useful during the pilot trial, and the field team includes this as one
of the important steps into the milk sampling protocol.

13The weighted average relationship between can level quality and farmer level quality holds for added
water and butterfat but not for bacteria. The added water and the butterfat are numerical data, while
bacteria are ordinal data based on the testing techniques in this study, as is explained in Section 4.2.1.

14Fixed effect model for example.
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negative value, and butterfat is a strictly positive value;15 (2) it can directly incorporate the
weighted average relationship between the aggregated can quality and individual farmers’
milk quality into the model and associated likelihood functions. In addition, the Bayesian
model also has two other clear benefits: (3) it performs well in different collection routes
in different cooperatives, as it has less room for over-fitting (it does not rely on fine-tuning
based on training samples, and the predictions are purely out-of-sample predictions); and
(4) it provides not just the average milk quality (point estimate) for each farmer over the
monitoring period but also a whole posterior distribution of each farmer’s milk quality, which
allows me to take into account the uncertainty and calculate the probability of farmers’ milk
quality type on any single day, which is important in this dynamic moral hazard problem,
as is discussed in section 2.2.

3.1 Priors

To estimate the posterior distributions for individual milk quality, I need to give the model
prior information about individual farmers’ milk quality. Figure A7 shows the distributions
of added water and butterfat at both the farmer level and the can level. I chose the prior dis-
tribution of farmer-level added water to be Half-Normal since added water is a non-negative
value, and Panel A of Figure A7 shows that it is likely to be a Half-Normal distribution; I
chose the prior distribution of farmer-level butterfat to be Gamma since butterfat is a strictly
positive value, and Panel B of Figure A7 shows that it is likely to be a Gamma distribution.
I chose the weakly informative priors for the Half-Normal and Gamma distribution parame-
ters to let them be drawn from an Inverse Gamma distribution. All the details are included
in the Technical Appendix C.

3.2 Likelihood

The theoretical aggregated can-level quality should be the weighted average of the individual
farmers’ milk quality in the can. The observed aggregated can-level quality typically has
some measurement error around its theoretical mean, so I model the can-level quality to
follow a Truncated Normal distribution16, with the mean equal to the weighted average of
the individual farmers’ milk quality in the can. The likelihood is calculated based on the pdf
of the Truncated Normal distribution, and the intuition is that the further away it is from
the theoretical mean, the less likely it is. All additional details are included in the Technical
Appendix C.

15In the next section, I show that I also have prior knowledge that individual farmers’ added water is
likely to follow a half-normal distribution, and butterfat is likely to follow a gamma distribution based on
the farmer level histogram.

16Truncated at 0 since the quality parameters are non-negative values.
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3.3 Posteriors and Model Performance

The Bayesian statistical models give the posterior point estimates of the farmers’ quality
parameters, which are the average quality over the monitoring period. Figure 3 compares
the model point estimates to the one-time individual tests: the model-predicted quality
shows a high correlation (at 1% level) with the individual milk test (0.75 for added water
and 0.62 for butterfat) among 940 farmers.17

Figure 3: Comparison between Model Prediction and Individual Tests
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Notes: This figure compares Bayesian point estimates of average milk quality over the monitoring period
with random individual test results. The left panel focuses on added water, while the right panel highlights
butterfat. Both the X-axis and Y-axis represent absolute quality levels measured as percentages. The Pearson
correlation coefficients between the Bayesian point estimates and the individual test results are calculated,
pooling data across all four rounds of quality monitoring. ***, **, and * represent significance at 1%, 5%,
and 10% respectively.

In addition, the Bayesian statistical models give two other outcome variables that are also
used for the analysis: First, the probability of each parameter failing the quality standards
(based on the entire posterior distribution); which can be either interpreted as the chance
of failing the standards if the milk is sampled and tested in any given day, or percentage of
days that the farmers’ milk fails the standards over the monitoring period. Second, I also
classify farmers’ milk quality as “bad”, “normal”, or “good,” based on whichever category has
the highest probability over the monitoring periods. Although I have discussed in section
2.2 that the farmer quality type is not fixed for every day, this classification is mainly meant
to classify farmers’ milk in a general sense during the monitoring period so that I can do

17I include additional ways of measuring model performance in the Technical Appendix C.
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subgroup analysis based on the model-defined bad quality later on. It is also worth noticing
that the model captured a larger percentage of farmers who were bad on quality.18 I will
come back to this difference when discussing the subgroup analysis using different definitions
of bad quality, either by model or individual tests.

Lastly, there is a chance for prediction errors. Therefore, I explained the model results
multiple times to the cooperatives’ management until they fully digested the information,
and both of the cooperatives recognized that the quality signals were useful and informative
but could also be noisy. It is important to note that the prediction error for each round
is independent (no systematic bias towards single farmers), as farmers’ milk is poured into
different cans randomly, so the chance of the same farmer being wrongly classified for two
or more rounds is low.

4 Experimental Design

4.1 Experimental Context and Design

As mentioned in previous sections, the cooperatives are not able to test every farmer every
day due to the prohibitively high cost (both time and monetary) of comprehensive milk
tests. The model is developed to extract individual farmers’ quality information from the
pooled can-level tests, and thus, it could save testing costs. Besides this approach, the
cooperatives could also consider conducting random testing, given the limited monitoring
resources. Random monitoring gives perfect information for the days when milk has been
sampled and tested but not other days. The cooperative updates its belief about how many
days the farmer produces high- or low-quality milk. In contrast, the Bayesian models on ag-
gregated can-level do not give perfect information for any single day but provide information
about overall performance, including the average milk quality and the probability of produc-
ing high- or low-quality milk on each day, as derived from the entire posterior distribution
discussed in section 3.3.

To test both of them in this dynamic moral hazard setting, I conducted an individual-level
RCT to randomly assign 940 farmers from two different cooperatives to one of the three treat-
ment conditions stratified by the milk collection routes. Group 1 farmers’ model predicted
quality information is shared with the cooperatives (as well as with the farmers themselves)
as the reviews for the entire monitoring period. Group 2 farmers’ one-time quality test infor-
mation is shared with the cooperatives (as well as with the farmers themselves) as random

18As is shown in Panel B of Table 1, fifty-seven percent of farmers were classified by the model as bad
quality on added water, while forty-seven percent of farmers were classified by individual tests as bad quality
on added water; nineteen percent of farmers were classified by the model as bad quality on butterfat, while
fourteen percent of farmers were classified by individual tests as bad quality on butterfat.
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monitoring. Group 3 serves as the control for the evaluation.

In the model group, I tested the aggregated cans for several days (10 on average, depending
on the size of collection routes) until the number of can-level observations was two times the
number of different farmers. Then I shared the three outcomes (generated by the model as
discussed in section 3.3) to both the farmers and the cooperatives: (1)average quality (from
point estimates), (2)the probability of producing good-, normal-, or bad-quality for any given
day (from posterior distributions), and (3) the general classification of quality types based
on whichever category has the highest probability over the monitoring periods. The quality
parameters shared in the model group include added water and butterfat, not bacteria, as
the model’s likelihood relies on the weighted average relationship between can-level quality
and farmer-level quality, as mentioned in section 3.2. The weighted average relationship
holds for added water and butterfat but not for bacteria. The added water and the butterfat
are numerical data, while bacteria are ordinal data based on the testing techniques in this
study. I will provide more information about the testing techniques in section 4.2.

In the random monitoring group, I informed the farmers that there would be a 10 percent
chance of testing milk every day, and the field team took farmer samples once in the 10-
day monitoring period. The individual samples were tested for added water, butterfat, and
bacteria. I shared the information on all three parameters19 with both the farmers and the
cooperatives.

One important difference when sharing the information with farmers in these two treatment
groups is that, in the random individual tests group, the field team informs the farmers of the
testing result and its corresponding quality category of bad, normal, or good. In contrast, in
the model group, the field team informs the farmers of the probability of being bad quality
type even if it is a 5% chance. This has implications for the effects of information sharing
since all farmers have a non-zero probability of being bad. I will revisit this in section 5.3.

I examine how cooperatives and farmers respond to this information. I have continuously
shared the information for 3 rounds so that I can monitor the dynamic changes in the
cooperatives’ and farmers’ behavior and milk quality. After I share the quality information
from one round and before I start a new round of quality monitoring, there are one to two
weeks off for the cooperatives and farmers to react. The first round of quality monitoring
occurred for the cooperative in Nyeri in May 2024 and in June 2024 for the cooperative in
Embu. Starting in July, I monitored quality in parallel on both cooperatives: the second
round of quality monitoring was conducted in July, the third round of quality monitoring

19Although in the model group, I did not share the bacteria information as the model does not work
for bacteria due to the data nature, I think it is still important and interesting to examine the coopera-
tives’ reactions to the bacteria information. Later on, I observed that cooperatives respond differently and
separately to each quality parameter.
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was conducted in August, and the fourth round was in September. Note that I need to use
the current round of quality monitoring results to evaluate the effects of the previous round
of quality monitoring and information sharing. Figure A8 presents the experimental design
and the timeline of this study.

4.2 Data

My main outcome data comes from two primary sources: milk quality data from the milk
tests and farmers’ behavior change from the survey data. In addition, I have the adminis-
trative data on milk volume and the attendance sheets for the cooperatives’ training events.
Cooperatives offer loans to the members through the Savings and Credit Cooperative Society
(SACCO), from which I have also obtained farmers’ credit data.

4.2.1 Milk Quality Data

This study focuses on three parameters of milk quality: added water, butterfat, and bacteria,
following the processor’s quality-price schemes. Among the three quality parameters, added
water and butterfat are tested by milk analyzers20 (see the Figure A9), which typically
takes 1 minute per test.21 The bacteria is tested using the Resazurin Test (RT), in which
a prepared solution of resazurin dye is added to the milk sample. The color change after
incubation indicates the milk quality: blue for good quality, purple or pink for normal quality,
and colorless for bad quality.22 Bacterial levels are determined by comparing the color to a
reference chart, as is shown in Figure A10.

Note that I tested every aggregated can and also recorded traceability data for each can, so I
have the model prediction results for all farmers in the study sample, regardless of the treat-
ment arms. At the same time, I also have individual test results for all farmers in the study
sample, regardless of the treatment arms, since we need to validate the model performance
for each round. The only difference is that there are no model-predicted bacteria, but there
are bacteria results from individual tests.

4.2.2 Surveys and Cooperatives’ Administrative Data

I conducted baseline farmer surveys in May and June 2024 and endline farmer surveys in
October 2024. The surveys capture farmers’ key farming practices related to milk quality,
including cow types and animal feeds for butterfat, the milking hygiene indicators, and

20I use the Ekomilk ULTRA PRO ultrasonic milk analyzer, produced by Eon Trading INC in Bulgaria.
21The lab staff usually tests 3 times per sample and records the last testing results to minimize the impact

of the residual milk from the previous samples.
22In the RT test, 1 mL of 0.005% resazurin dye solution is added to 10 mL of the milk sample in a test

tube, then incubated in a water bath at 37°C for 10 minutes. The test results are interpreted based on how
quickly the color shifts, reflecting bacterial activity.
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milk-storing techniques for bacteria. I have access to the cooperatives’ records of farmers’
daily milk delivery, which are the basis for milk payment, the attendance sheets for the
cooperatives’ training event, and also the farmers’ credit limit data.

4.3 Summary Statistics and Randomization Check

Table 1 presents the summary statistics and a check of the randomization balance for a
selected set of indicators. For each variable, I show the control mean in Column 1 and
the difference between each treatment group and the control group in Column 2-3. Twenty
percent of household heads are female, and the average respondent is 55 years old, has
10 years of education, has 4 household members, and owns 2.7 cattle; of those, 1.49 are
lactating cows. On average, households have been keeping cattle for 18 years and have a
daily production of 15 kgs of milk; of those, 11 kgs are sold to the cooperatives. Only 1
percent of households reported actively selling to informal traders. The price dairy farmers
receive from selling milk to cooperatives is 41.3 ksh per kg, and they are paid on a monthly
basis. At baseline, twenty-three percent of the households reported that they had been
trained on butterfat, and twenty-five percent of the households reported that they had been
trained on bacteria in the past 6 months. As a result, the milk quality tests show that the
average added water in the farmers’ milk is 6 percent, and forty-seven percent of the farmers
will be classified as having bad quality added water based on individual tests, according
to the national standards (KeBS); the model detected a higher percentage of farmers to
be bad quality of added water, which is fifty-seven percent. The individual tests show
that the average butterfat is 4.03%, and only fourteen percent of farmers were classified
as bad quality according to the national standards (KeBS); the model detected a higher
percentage of farmers to be bad quality of butterfat, which is nineteen percent. In addition,
the individual tests show twenty-three percent of farmers had a bad quality of milk in terms
of bacteria.

Overall, randomization appears successful - of the 40 regression coefficients in the table,
only 2 are significant at the 10 percent level (household size and the number of years keeping
cattle). Most importantly, the milk quality is balanced at baseline for all of the added water,
butterfat, and bacteria. Further, there is no obvious channel in which the household size and
the number of years of keeping cattle can directly affect the milk quality, but I still control
both of these covariates in all regressions. In addition, all regressions throughout the paper
were pre-specified as ANCOVA, and I control for baseline measures of outcomes.
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Table 1: Baseline Summary Statistics and Experimental Balance

(1) (2) (3)
Mean
(SD)

Coefficient on Difference
(Treatment - Control)

Control Random Tests Model Detection

Panel A. Demographics
Age 54.65 -0.66 -0.35

(13.42) (0.98) (0.98)
=1 if female 0.19 0.01 0.02

(0.03) (0.03)
Years of education 9.90 -0.09 0.16

(3.40) (0.22) (0.22)
Number of household members 4.07 0.12 -0.19*

(1.49) (0.11) (0.11)
Total cattle owned 2.73 -0.02 0.02

(1.84) (0.13) (0.14)
Number of lactating cows owned 1.49 0.02 -0.03

(0.91) (0.06) (0.06)
Number of years keeping cattle 18.19 -1.82* 0.60

(13.24) (0.95) (0.95)
Daily milk production (Kgs) 14.59 -0.03 -0.31

(11.20) (0.85) (0.85)
Daily sales to cooperatives (Kgs) 11.16 0.08 -0.61

(9.82) (0.72) (0.73)
=1 if selling to informal traders actively 0.01 -0.00 -0.00

(0.01) (0.01)
Payment frequency from cooperatives (Times per month) 1.00 0.00 0.00

(0.00) (0.01) (0.01)
=1 if trained on butterfat 0.23 -0.00 0.00

(0.42) (0.03) (0.03)
=1 if trained on bacteria 0.25 -0.01 0.00

(0.43) (0.03) (0.03)

Panel B. Milk Quality
Added water(%) 5.98 0.45 -0.49

(7.03) (0.50) (0.49)
=1 if bad quality of added water (individual sample) 0.47 -0.00 0.01

(0.03) (0.03)
=1 if bad quality of added water (model detection by can sample) 0.57 0.02 -0.00

(0.03) (0.03)
Butterfat(%) 4.03 -0.02 -0.03

(0.84) (0.06) (0.06)
=1 if bad quality of butterfat (individual sample) 0.14 0.03 0.01

(0.03) (0.03)
=1 if bad quality of butterfat (model detection by can sample) 0.19 -0.01 -0.01

(0.03) (0.03)
=1 if bad quality of bacteria (individual sample) 0.23 0.04 -0.04

(0.03) (0.03)

Notes: N=719 for Panel A, the variables in Panel A are from the baseline farmer surveys; N=940 for Panel B, the variables
in Panel B are from the milk tests at the individual farmer level or the model detection based on the aggregated can sample
tests. Bad quality refers to failing to meet the national KeBS standards for the corresponding quality parameter. The
dependent variables are in rows; each row shows a coefficient from a separate regression on the respective dependent
variable. Standard errors are shown in parentheses under the coefficients. The strata (milk collection route) fixed effect is
included in all regressions. ***, **, and * represent significance at 1%, 5%, and 10% respectively.
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5 Results

5.1 Dynamic Treatment Effects

I estimate dynamic treatment effects using different rounds of quality monitoring information
as follows:

Yist =
∑
t

βt (RandomTestsis × Dt)+
∑
t

γt (Modelis × Dt)+ηYis0+λs+ϕr+θXi+ϵist, (1)

where Yist is an outcome for individual i in strata s (collection route) at time t; t is defined
as the quality monitoring rounds; RandomTestsis is a treatment indicator that takes the
value 1 if individual i is in the random test group and 0 otherwise; Dt is the binary variable
equal to 1 for round t ; Modelis is a treatment indicator that takes the value 1 if individual
i is in the model group and 0 otherwise; Yis0 is the baseline value of the outcome; λs is the
collection route(strata) fixed effect; ϕr is the round fixed effect; Xi is a vector of baseline
controls for family size and years of keeping cattle since treatment groups differ in those
variables at baseline; and ϵist is the error term. I cluster standard errors at the individual
level, which is the level of randomization.

Figure 4 and Figure 5 plot the coefficients and confidence intervals from Equation (1) for
both βt (blue) and γt (red), which represent for the dynamic effects of random individual
tests and model detection, respectively. Note that I use the individual test results as the
outcomes to examine the treatment effects, and I need to use the current round of quality
monitoring results to evaluate the effects of the previous round of quality monitoring and
information sharing. Therefore, the quality monitoring rounds on the X-axis in each figure
are from 2 to 4. The difference between Figure 4 and Figure 5 is that Figure 4 focuses on the
change in absolute level of quality, which includes added water and butterfat, while Figure
5 focuses on the change in quality categories, which includes added water, butterfat, and
bacteria.23

Figure 4a shows a continuous decrease in the added water level after each round of informa-
tion sharing for both the random individual tests group and the model group, compared to
the control group. The model group decreased more after 3 rounds of quality information
sharing, and the effect of the model group is significant at the 5% level, while the effect of
the random test group is insignificant. The magnitudes are sizeable for both groups: farmers
in the random tests group have 1.01% less added water on average, and farmers in the model
group have around 1.75% less added water on average. These translate to a 12.6 percent
and a 21.9 percent decrease in added water compared to the baseline mean of the control

23I do not have an absolute level of bacteria because the testing techniques in this study only provide
ordinal data, as discussed in Section 4.2.1.
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group (8% added water). The finding is consistent with my observation of the cooperatives’
reactions to the information. New rounds of information update and reinforce the cooper-
atives’ belief about farmers’ quality, and cooperatives take action accordingly to regulate
water adulteration.

Figure 4b shows that the butterfat increased after the information sharing (positive coeffi-
cients), but in all rounds, it fell to be indistinguishable from zero. One reason is that the
average butterfat was very high from the beginning of the project. As Table 1 shows, the
baseline control mean for butterfat is 4.03%, which is higher than the processors’ quality
rewarding requirement of 3.8%. Therefore, the room for improvement is small.

Figure 5 presents the effects on quality categories. Figure 5a shows that no significant amount
of farmers changed their “bad” type on added water in the random tests group, while the
share of farmers classified as “bad” type on added water reduced significantly in the model
group. On butterfat, although both treatment groups did not significantly increase the level,
the share of farmers classified as “bad” type on butterfat reduced significantly. There are
no effects on the bacteria for farmers in the model group, as there is no information on
bacteria shared in this group. The share of farmers who are classified as “bad” type of
bacteria reduced only after 2nd round of information sharing, but the effects disappeared
after the third round. It is also not surprising that I did not observe the cooperatives really
emphasizing the bacteria; cooperatives trained the farmers with high bacterial load, but
there were no real incentives for farmers to keep the quality standards on bacteria.
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Figure 4: Dynamic Effects on Quality Level (%)
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(b) Butterfat
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Notes: This figure presents the coefficients from the regression equation (1). The regressions include the
baseline measurement of the outcome, baseline controls for the number of household members and the number
of years keeping cattle, monitoring round fixed effects, and strata (collection route) fixed effects. Standard
errors are clustered at the individual level, which is the level of randomization. The outcomes shown in this
figure represent absolute quality levels measured as percentages based on the individual-level random tests.
Bacterial data is excluded from the figure, as it is ordinal in nature, as explained in Section 4.2.1.
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Figure 5: Dynamic Effects on Share of Farmers Classified as Bad Quality (=1 if Bad)
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(c) Bacteria
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Notes: This figure presents the coefficients from the regression equation (1). The regressions include the
baseline measurement of the outcome, baseline controls for the number of household members and the
number of years keeping cattle, monitoring round fixed effects, and strata (collection route) fixed effects.
Standard errors are clustered at the individual level, which is the level of randomization. The outcomes
in this figure represent quality classifications based on a comparison of individual-level random test results
against national KeBS standards. “Bad quality” indicates the failure to meet the KeBS standards for the
corresponding quality parameter. Note that there is no bacteria information shared for model group farmers
since the model works for numerical values, while bacterial data is ordinal in nature, as explained in Section
4.2.1. Therefore, the model group is expected to show no significant effect on bacteria in Figure 5c.
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5.2 Effects on Milk Quality at Endline

I use the last round of quality monitoring as endline quality to examine the effects after 3
rounds of information sharing. To do it, I use a similar specification:

Yis = βRandomTestsis + γModelis + ηYis0 + λs + θXi + εis, (2)

where Yis is the value of the last round of quality monitoring results. Table 2 presents the
effects of three rounds of information sharing on added water in Columns 1-2, the effects on
butterfat in Columns 3-4, and the effect on bacteria in Column 5. Column 1 and Column
3 are the effects on the absolute quality level. Column 2, Column 4, and Column 5 are
the effects on quality categories, defined by failing the minimal requirement of the national
standards KeBS. I also provide a test for whether β = γ at the bottom of the table.

I confirmed again that farmers in the model group have 1.75% less added water, which is
a 21.9 percent reduction compared to the control group; farmers in the random tests group
have 1.01% less added water, which is a 12.6 percent reduction compared to the control
group. There are no significant effects on the level of butterfat, but the share of “bad” type
butterfat farmers significantly reduced in both the random tests group and the model group.
There are 11% and 10% fewer farmers classified as “bad” type butterfat for the random tests
group and model group correspondingly, compared to the control group. Column 5 shows
that there is little effect on the share of bad bacteria farmers in either group.

The bottom of the table shows tests for whether the effects are equal between the random
tests group and the model group. Of the five outcomes, I only reject the equality for the bad
water type category. Note that the model is able to capture a larger portion of “bad” type
farmers (47% bad water farmers by individual tests, and 57% bad water farmers by model,
as is shown in Table 1 Panel B.). This might also be the reason why the added water level
is reduced more compared to the random tests group.
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Table 2: Treatment Effects on Milk Quality at Endline

Added Water(%) =1 if Bad Water Butterfat(%) =1 if Bad Butterfat =1 if Bad Bacteria

(1) (2) (3) (4) (5)

Random Tests (β) -1.01 0.02 0.10 -0.11*** -0.02
(0.73) (0.04) (0.09) (0.04) (0.04)

Model Detection (γ) -1.75** -0.10** 0.13 -0.10** -0.01
(0.72) (0.04) (0.09) (0.04) (0.04)

p-value:
β = γ 0.303 0.003 0.705 0.838 0.817

Observations 649 649 649 649 649
Control Mean of Depvar 8.00 0.65 3.86 0.28 0.21
Control SD of Depvar 9.57 0.48 1.05 0.45 0.41

Notes: This table presents results from running equation (2). Regressions include baseline measurements of outcome,
collection route fixed effects, and baseline controls for the number of household members and the number of years keeping
cattle. Column (1) and column (3) present the effect on absolute quality levels measured as percentages based on the
individual-level random tests. Column (2), column (4), and column (5) present the effect on whether they were classified as
“Bad Quality”. “Bad quality” indicates the failure to meet the KeBS standards for the corresponding quality parameter. “Bad
Quality” classifications in the dependent variables are based on a comparison of individual-level random test results against
national KeBS standards. Note that there is no bacteria information shared for model group farmers since the model works
for numerical values, while bacterial data is ordinal in nature, as explained in Section 4.2.1. Therefore, the model group is
expected to show no significant effect on bacteria in column (5). ***, **, and * represent significance at 1%, 5%, and 10%
respectively.

5.3 Subgroup Analysis

To further explore which group of farmers is driving the results, the following specification
is used to conduct the subgroup analysis:

Yis =β(RandomTestsis × BadQualityi0) + γ(Modelis × BadQualityi0)

+ δRandomTestsis + µModelis + αBadQualityi0 + ηYis0 + λs + θXi + εis,
(3)

where BadQualityi0 is the baseline quality indicator that takes the value 1 if individual i
is classified as bad quality and 0 otherwise. Note that the bad quality can be defined by
either the model or individual tests, and the model defined a larger portion of farmers as the
bad type. I will use both bad-quality assignments to test for differences by subgroup. I will
focus on the subgroup analysis for the three outcomes I find significantly improved in Table
2: Added water level, added water category, and butterfat category.

Table 3 Panel A presents the results when bad quality is defined by individual tests: It
appears that bad-quality farmers on added water are the ones who drive the reduction in
added water level for the random tests group. Note that the coefficient of the interaction
term with the model (γ) is not significant, mainly because the “good” farmers on added
water (defined by individual tests) also contribute to the reduction of the average added
water level in the model group. The coefficient of the interaction term with the model (β) is
very close to being significant at 10% level. Both “good” farmers and “bad” farmers on added
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water have reduced the chance of being bad on added water. It appears that if I define the
bad quality of butterfat by individual tests, the “good” farmers defined by individual tests at
baseline are the ones who drive the results of reduction in the share of bad butterfat farmers.

Table 3 Panel B presents the results when bad quality is defined by the model predictions:
the results are clearly mainly driven by the “bad” quality farmers at baseline for all three
outcomes of added water level, added water category, and butterfat category. It is worth
noticing that “bad” added water farmers reduced the chance of being classified as bad added
water type, but the “good” added water farmers increased the chance of being classified as
bad added water type. This explains why there is no significant effect on the share of “bad”
type added water farmers in the pooled regressions in Table 2 for the random tests group.

Overall, both “good” and “bad” farmers, as defined by the model at baseline, contribute to
the improvement of milk quality. The intuition for this is that, as described in section 4.1,
the field team informs the farmers of the probability of being bad quality type on any single
day, no matter how small it is, even if it is a 5% chance, while in the random individual tests
group, the field team informs them of their testing results and whether it is good or bad.
Therefore, this potentially causes the difference between the behavior of “good” farmers in
the model group and in the random monitoring group since “good” farmers are assigned a
non-zero probability of being bad, and “bad” farmers are simply informed that they were not
bad upon testing. In addition, the model defined a larger portion of farmers as bad type, and
the model defined bad quality type farmers at baseline were the ones who drive the results.

I plot the cumulative distribution function (CDF) in Figure A12 for added water and butter-
fat and the subgroup CDF for added water in Figure A12a and subgroup CDF for butterfat
in Figure A12b. These plots further confirmed that “good” farmers at baseline behaved dif-
ferently in the model group compared to the random tests group, as farmers in the model
group feel being monitored constantly since no matter how small their chances of being
classified as “bad” farmers, we notify them. In contrast, farmers in the random tests group
were notified that their milk quality was good, if that is what the individual testing results
showed. To be specific, in Panel (a) and Panel (b) of Figure A12a, no matter whether we
defined “good” farmers based on the model or the individual tests, the “good” farmers in
the random tests group were adding more water compared to the farmers in the control
group. Only “bad” farmers in the random tests group were adding less water compared to
the farmers in the control group, as is shown in Panel (c) and Panel (d) in Figure A12a. In
contrast, both “good” farmers and “bad” farmers in the model group behaved better than
the farmers of corresponding categories in the control group, as farmers in the model group
felt being monitored constantly.
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Table 3: Treatment Effects on Milk Quality at Endline (Subgroup by Bad Baseline Quality)

Added Water(%) =1 if Bad Water Butterfat(%) =1 if Bad Butterfat =1 if Bad Bacteria

(1) (2) (3) (4) (5)

Panel A: Bad Quality by Individual Tests
Random Tests × Bad Quality (β) -2.26 -0.07 -0.21 -0.08 -0.02

(1.46) (0.09) (0.26) (0.11) (0.08)
Random Tests 0.05 0.06 0.14 -0.09** -0.01

(1.00) (0.06) (0.10) (0.04) (0.04)
Model Detection × Bad Quality (γ) -1.21 0.01 -0.32 -0.03 -0.01

(1.44) (0.09) (0.26) (0.11) (0.09)
Model Detection -1.17 -0.11* 0.18* -0.09** -0.01

(0.99) (0.06) (0.10) (0.04) (0.04)
=1 if Bad Quality by Individual Tests 0.26 0.32*** 0.01 0.29*** 0.01

(1.17) (0.06) (0.21) (0.08) (0.06)

p-value:
β = γ 0.462 0.339 0.640 0.622 0.896

Observations 649 649 649 649 649
Control × Good Baseline Quality : Mean 5.59 0.50 3.91 0.24 0.23
Control × Good Baseline Quality : SD 8.09 0.50 0.98 0.43 0.42

Panel B: Bad Quality by Model
Random Tests × Bad Quality (β) -2.61* -0.17* 0.25 -0.25**

(1.47) (0.09) (0.25) (0.10)
Random Tests 0.43 0.12* 0.05 -0.05

(1.09) (0.07) (0.10) (0.04)
Model Detection × Bad Quality (γ) -1.41 -0.13 0.15 -0.17*

(1.46) (0.09) (0.24) (0.10)
Model Detection -0.98 -0.03 0.10 -0.06

(1.09) (0.07) (0.10) (0.04)
=1 if Bad Quality by Model 1.44 0.19*** -0.26 0.33***

(1.11) (0.07) (0.18) (0.07)

p-value:
β = γ 0.409 0.630 0.673 0.392

Observations 649 649 649 649
Control × Good Baseline Quality : Mean 5.42 0.46 3.95 0.20
Control × Good Baseline Quality : SD 8.38 0.50 0.91 0.40

Notes: This table presents results from running equation (3). Regressions include baseline measurements of outcome, collection route fixed
effects, and baseline controls for the number of household members and the number of years keeping cattle. Column (1) and column (3) present
the effect on absolute quality levels measured as percentages based on the individual-level random tests. Column (2), column (4), and column
(5) present the effect on whether they were classified as “Bad Quality”. “Bad quality” indicates the failure to meet the KeBS standards for
the corresponding quality parameter. “Bad Quality” classifications in the dependent variables are determined by comparing individual-level
random test results to national KeBS standards. For the regressors, “Bad Quality” classifications are derived from individual-level random
tests in Panel A and from model detection in Panel B. Note that there is no bacteria information shared for model group farmers since the
model works for numerical values, while bacterial data is ordinal in nature, as explained in Section 4.2.1. Therefore, the model group is
expected to show no significant effect on bacteria in column (5) of Panel A. Additionally, no regression is conducted for column (5) in Panel
B for the same reason. ***, **, and * represent significance at 1%, 5%, and 10% respectively.

5.4 Effects on Training

After I shared the quality information, cooperatives contacted the regional Brookside train-
ers24 to help to train low-quality farmers targeting different quality parameters.

Table 4 presents the effects on training. Panel A shows that there is a significantly higher
percentage of farmers in both the random tests group and model group who have been
trained on butterfat, and only farmers in the random tests group have a significantly higher

24Figure A shows the training sessions.
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percentage were trained on bacteria since I did not share the bacteria information for the
model group. Panel B is the subgroup analysis using individual tests to define bad quality,
and Panel C is the subgroup analysis using the model to define bad quality. Both Panel B
and C show that farmers who have bad quality at baseline are mainly the ones who got the
training, although I do see some spillover of the training to farmers who have good quality of
butterfat at the baseline when we use the model to define quality type in the random tests
group.

The butterfat training covered the best animal feeding practices, and farmers’ responses
are presented in Table A2. Overall, there is no significant evidence that average treatment
farmers used more concentrates and dry matter in animal feed to boost butterfat. One reason
is that the average butterfat was very high from the beginning of the project. As Table 1
shows, the baseline control mean for butterfat is 4.03%, which is higher than the processors’
quality rewarding requirement of 3.8%. Therefore, the room for improvement is small. It
appears that farmers have already used an appropriate level of concentrates on average.25

The bacteria training covered recommended milking hygiene, and farmers’ responses are
presented in Table A3. In column (3), a significantly larger percentage (12 percent more)
of farmers in the random individual tests group26 used milking jelly after milking, and
a significant 8 percent more farmers in the random tests group used different towels for
milking different cows. Both of these practices are highly recommended by agronomists
for milking hygiene. However, when it comes to practices that incur monetary costs, there
is no evidence showing treatment farmers are following the recommended practices, which
include using aluminum cans to store milk and not mixing evening milk and morning milk,
then selling to the cooperatives. It is understandable that without clear quality rewards,
farmers have low incentives to upgrade quality, especially when it is costly. In fact, there
was a significant effect on reducing the probability of farmers failing the minimal required
national standards of bacteria after the second round of information sharing, but the effects
disappeared after the 3rd round. This suggests that cooperatives will need to provide clear
quality incentives to farmers to have a long-lasting effect.

25Note that there is an optimal ratio of using concentrates and dry matter in the animal feed; if used
excessively, it can also reduce the butterfat in the cow milk.

26Note that there is no bacteria information shared for farmers in the model group.
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Table 4: Treatment Effects on Training

=1 if Trained on Butterfat =1 if Trained on Bacteria
(1) (2)

Panel A: Pooled Regression
Random Tests (β) 0.11*** 0.17***

(0.02) (0.02)
Model Detection (γ) 0.09*** -0.01

(0.02) (0.02)

p-value:
β = γ 0.396 0.000

Observations 719 719
Control Mean of Depvar 0.18 0.21
Control SD of Depvar 0.38 0.41

Panel B: Interaction with Baseline Quality by Individual Tests
Random Tests × Bad Quality (β) 0.50*** 0.71***

(0.05) (0.03)
Random Tests 0.02 -0.01

(0.02) (0.02)
Model Detection × Bad Quality (γ) 0.48*** -0.01

(0.05) (0.04)
Model Detection 0.02 -0.01

(0.02) (0.02)
=1 if Bad Quality by Individual Tests 0.01 -0.00

(0.04) (0.03)
p-value:
β = γ 0.650 0.000

Observations 719 719
Control × Good Baseline Quality : Mean 0.19 0.21
Control × Good Baseline Quality : SD 0.39 0.41

Panel C: Interaction with Baseline Quality by Model
Random Tests × Bad Quality (β) 0.29***

(0.05)
Random Tests 0.06**

(0.02)
Model Detection × Bad Quality (γ) 0.46***

(0.05)
Model Detection 0.02

(0.02)
=1 if Bad Quality by Model -0.00

(0.04)

p-value:
β = γ 0.001

Observations 719
Control × Good Baseline Quality : Mean 0.19
Control × Good Baseline Quality : SD 0.39

Notes: This table presents results from running equation (2) for Panel A, and equation (3) for Panel B
and Panel C. Regressions include baseline measurements of outcome, collection route fixed effects, and
baseline controls for the number of household members and the number of years keeping cattle. For
the regressors, “Bad Quality” classifications are derived from individual-level random tests in Panel B
and from model detection in Panel C. “Bad quality” indicates the failure to meet the KeBS standards
for the corresponding quality parameter. Note that there is no bacteria information shared for model
group farmers since the model works for numerical values, while bacterial data is ordinal in nature,
as explained in Section 4.2.1. Therefore, the model group is expected to show no significant effect
on bacteria in column (2) of both Panel A and Panel B. Additionally, no regression is conducted for
column (2) in Panel C for the same reason. ***, **, and * represent significance at 1%, 5%, and 10%
respectively.
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5.5 Credit Access

I obtained administrative data from the SACCO regarding the credit limits of their members.
As is shown in Table 5, the cooperatives increased the credit limit to those farmers who want
to buy animal feeds and have never added water to the milk, defined by individual test in
Panel B and by Model in Panel C, as the cooperatives believe that these farmers are more
trustworthy and will be more likely to pay back the loans. It appears that the flow of quality
information will also facilitate the flow of credit provision along the value chain.

Farmers in the model group who had never added water to the milk, defined by the model,
enjoyed a 57-dollar higher credit limit compared to the farmers in the control group who
had added water to the milk. The effect size is 42 dollars if we define never added water
to the milk based on individual tests. The effect sizes are also sizable for farmers in the
random tests group: 35 dollars if water is never added to milk, as defined by the model, and
28 dollars if water is never added to milk, as defined by the individual tests.

The increase in credit limits translated to the increase in purchasing animal feed on credit.
As is shown in Column (2) of Table 5, Farmers in the model group who had never added
water to the milk, defined by the model, purchased 30 dollars more animal feed on credit,
compared to the farmers in the control group who had added water to the milk. The effect
is 19 dollars if water is never added to milk, as defined by the individual tests, 26 dollars
and 3 dollars for farmers in the random tests group if water is never added to milk, defined
by the model, and by individual tests, respectively.

Note that outcomes in column (1) are derived from the cooperative’s administrative data
(SACCO), while outcomes in column (2) are based on the endline farmer survey. The
survey data includes loans obtained through all channels, not limited to the SACCO, for
the purchase of animal feeds. The number of observations differs between the two columns
because the surveys were conducted on a subset of farmers from the study sample.
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Table 5: Treatment Effects on Credit Access

Credit Limit (USD)
in the Current Month

Feed on Credit (USD)
in the Past 30 days

(1) (2)
Panel A: Pooled Regression
Random Tests (β) -0.47 5.07

(7.80) (4.17)
Model Detection (γ) 8.32 6.31

(7.63) (4.17)

p-value:
β = γ 0.251 0.766

Observations 402 314
Control Mean of Depvar 93.90 12.27
Control SD of Depvar 84.83 20.69

Panel B: Interaction with Never Added Water by Individual Tests
Random Tests × Never Added Water (β) 28.32 3.40

(21.04) (12.30)
Random Tests -4.97 4.53

(8.54) (4.43)
Model Detection × Never Added Water (γ) 42.04** 19.37*

(20.36) (11.62)
Model Detection 0.97 2.62

(8.39) (4.53)
=1 if Never Added Water by Individual Tests -22.09 0.45

(15.40) (8.89)
p-value:
β = γ 0.488 0.162

Observations 402 314
Control × Have Added Water : Mean 93.82 11.87
Control × Have Added Water : SD 82.55 19.74

Panel C: Interaction with Never Added Water by Model
Random Tests × Never Added Water (β) 34.96 26.37*

(27.36) (15.54)
Random Tests -4.43 2.55

(8.25) (4.33)
Model Detection × Never Added Water (γ) 56.99** 29.87**

(27.53) (14.93)
Model Detection 1.60 2.41

(8.00) (4.40)
=1 if Never Added Water by Model -17.65 -10.97

(23.04) (12.87)

p-value:
β = γ 0.301 0.764

Observations 402 314
Control × Have Added Water : Mean 92.22 12.31
Control × Have Added Water : SD 86.12 20.72

Notes: This table presents results from running equation (2) for Panel A, and equation (3) for
Panel B and Panel C. Regressions include baseline measurements of outcome, collection route
fixed effects, and baseline controls for the number of household members and the number of years
keeping cattle. Outcomes in column (1) are derived from the cooperative’s administrative data
(SACCO), while outcomes in column (2) are based on the endline farmer survey. The survey
data includes loans obtained through all channels, not limited to the SACCO, for the purchase of
animal feeds. The number of observations differs between the two columns because the surveys
were conducted on a subset of farmers from the study sample. For the regressors, “Never Added
Water” classifications are derived from individual-level random tests in Panel B and from model
detection in Panel C. “Never Added Water” indicates that the added water level consistently met
KeBS standards across all four rounds of quality monitoring. ***, **, and * represent significance
at 1%, 5%, and 10% respectively.
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5.6 Cost Efficient Analysis

The results so far highlight the differences in milk quality improvements across the treatment
groups. I calculate the improvements in added water and butterfat for different treatment
arms across different monitoring periods, as shown in Figure A11.

Taking added water as an example, the average added water increased by 2.87 percent-
age points in the Control Group at the endline, by 1.59 percentage points in the Random
Tests Group, and by only 0.16 percentage points in the Model Group. In terms of improve-
ment, the Model Group demonstrates a significant impact, with an improvement of 2.71
percentage points (calculated by subtracting the baseline difference: 2.87 - 0.16), while the
Random Tests Group shows an improvement of 1.28 percentage points (1.59 - 0.16). For
the Model Group, can samples are tested until the number of can-level observations is twice
the number of different farmers, resulting in a monetary cost that is double. However, the
improvement is more than doubled, with the model achieving 2.12 (which is 2.71/1.28) times
the improvement.

This back-of-the-envelope calculation indicates that achieved a more significant reduction
in added water per testing dollar spent. Additionally, the model approach saves time on
individual milk samples taken in the field, and it provides aggregated can-level quality infor-
mation to help differentiate good milk from bad milk before it is mixed at the cooling plant.
These advantages suggest that this new quality monitoring approach could be a preferable
method for continuously monitoring and regulating milk quality.

6 Conclusion

This study aims to promote the transmission of quality incentives along the value chain from
downstream buyers to upstream farmers, which is crucial for farmers to improve the quality
of agricultural products and then transit towards market-driven, commercial agriculture. A
longstanding barrier that has prevented the transmission of quality incentives in the dairy
sector is the high testing cost of individual milk. My study addresses the high testing costs for
individuals’ milk through the digital traceability system and an innovative quality monitoring
method based on Bayesian statistical models. Using pooled milk can testing combined
with the traceability data; I developed a scalable solution that infers individual farmers’
milk quality without incurring the full costs of testing each farmer separately. The model-
predicted quality correlates significantly with individual test results and offers a reliable
alternative, with a correlation of 0.75 for water adulteration and 0.62 for butterfat.

I also evaluate the effects of reducing quality information frictions by revealing randomly
selected farmers’ milk quality information either by the model or by random individual tests
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to both the cooperatives and farmers. Experimental results highlight the effectiveness of this
new monitoring approach: farmers in the model group reduced added water by a significant
21.9% relative to the control group, whereas those in the individual test group exhibited
an insignificant reduction of 12.6%. The model outperforms conventional random testing
across most metrics. A back-of-the-envelope calculation indicates that the model provides
a cost-effective means of improving milk quality, making it a promising tool for continuous
quality monitoring and scalable implementation.

I observed that cooperatives increased credit limits for farmers who consistently produce
high-quality milk and seek loans to purchase animal feed. This decision reflects the cooper-
atives’ belief that these farmers are more trustworthy and more likely to repay loans. This
relationship suggests that the dissemination of quality information can facilitate credit allo-
cation along the value chain. Enhanced access to credit for high-quality producers generates
a positive feedback loop within the value chain, characterized by improved product quality,
expanded credit opportunities, and increased income (Casaburi and Willis 2024). This pa-
per contributes to the literature emphasizing the necessity of engaging multiple stakeholders
across the value chain rather than focusing on isolated actors (Bellemare et al. 2022). The
integration of a traceability system with Bayesian statistical models introduces novel data
and methodological approaches, offering important implications for future analyses of value
chain dynamics.

Compared to low-income countries, most developed economies have already required food
firms to trace food, feed, and ingredients through all stages of production, processing, and
distribution to the final consumer. Examples include but are not limited to regulations from
The General Food Law Regulation of the European Union since 2005, and regulations from the
Food and Drug Administration (FDA) in the U.S. since 2006. Kenya is currently developing
new legislation to implement a quality-based milk payment system. Since October 2024, the
Kenya Cabinet Secretary for Agriculture has collaborated with the CGIAR International
Livestock Research Institute (ILRI) to shape this policy. My results speak directly to these
attempts to drive the structural transformation of the Kenyan dairy sector. Beyond Kenya,
the traceability system and the new quality monitoring approach have the potential to be
scaled up to not only dairy cooperatives in many other countries but also a wide range of
agricultural commodities.
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A Appendix

Figure A1: Kenyan Dairy (Formal) Value Chain

50-liter milk can

Transporters use  
Trucks to carry
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3. reject (cannot be traded by law)

Notes: This figure illustrates the flow of milk through the formal value chain in Kenya’s dairy sector,
facilitated by cooperatives. Dairy cooperatives hire milk transporters to collect milk from farmers. Milk is
not tested at this point due to the high testing cost (both time and monetary). Transporters usually aggregate
the milk from multiple farmers to fill larger milk cans, which are then transported to collection centers. The
collection centers pour the milk together into cooling plants (usually containing 10 to 100 of these cans)
for sale to processors. These processors then perform comprehensive milk quality tests. Processors always
classify milk into three categories based on the milk quality testing results: (1) accept the aggregated milk
with a premium price, (2) accept it without a premium price, or (3) reject it. The reason is that high-quality
milk can be used to produce high-value products like buttermilk and yogurt. Medium-quality milk is limited
to use in ultra-pasteurized liquid packets, but low-quality milk cannot be traded by law. I rely on the
transporters to collect traceability data using the digital app, as is shown in Figure A3.
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Figure A2: Assigning Unique IDs to Each Aggregated Milk Container

Notes: This figure displays the aggregated cans prior to marking (top left panel) and after marking (bottom
left panel).
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Figure A3: Digital Traceability System

Notes: This figure demonstrates how transporters use the digital app to collect traceability data. The
app records key information such as the collection route, whether the milk is from the morning or evening,
aggregated can numbers, and corresponding trips (e.g., 001/1 indicates can 1 on the first trip). To prevent
errors, the app displays the total can volume, ensuring it does not exceed 50 liters. Additionally, the app
collects unique member IDs assigned by the cooperatives; when a member ID is selected, the member’s name
appears for verification. Transporters are also required to input the total weight and tare weight to calculate
the net weight.
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Figure A4: Pouring Milk into Aggregated Containers on Truck

Notes: When collecting milk, transporters pour it into aggregated containers on the truck and are advised
to randomly distribute farmers’ milk into different containers. This approach increases variation in can-level
composition and enhances the model’s performance. Before departing for milk collection, the aggregated
containers are arranged sequentially according to their can IDs. In the field, milk from the first farmer is
poured into the first can, the second farmer’s milk into the second can, and so on. Once all the aggregated
cans have been filled with milk from at least one farmer, a new round of pouring begins. During this
round, transporters randomly select a starting can and then proceed sequentially through the containers.
This process ensures that the neighboring farmers do not consistently mix their milk (e.g., the 1st and 2nd
farmers), and it also prevents cases where the 1st and 23rd (if there are 22 cans in total) farmers’ milk is
always mixed in the same container.

40



Figure A5: Mixing Milk before Taking Samples at the Cooling Plant

Notes: Before collecting samples from the aggregated cans, the field team used a plunger to thoroughly mix
the milk by stirring it from top to bottom until it was well combined. This proved to be necessary and useful
during the pilot trial, and the field team included this as one of the important steps in the milk sampling
protocol.

Figure A6: Milk Samples with Ice Bricks

Notes: Milk sample is poured into small sample tubes with unique sample IDs and stored with ice bricks
to keep fresh while shipping to the milk testing lab.
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Figure A7: Milk Quality Distribution (Pooled All Rounds)

(a) Panel A: Added Water
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(b) Panel B: Butterfat

18% farmers' butterfat is below 3.25%

14% cans' butterfat is below 3.25%
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Notes: This figure shows the distributions of added water and butterfat at both the farmer and can levels.
The added water is non-negative, and its distribution at the farmer level closely resembles a Half-Normal
distribution, which I have selected as the prior for our analysis. Butterfat, being strictly positive, aligns well
with a Gamma distribution at the farmer level, which I have chosen as the prior for this parameter. The
national KeBS standards require that added water must be less than 4% and butterfat must exceed 3.25%.
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Figure A8: Experimental Design and Timeline

(a) Panel A: Experimental Design
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Figure A9: Added Water and Butterfat Tests

Notes: Added water and butterfat are tested by the Ekomilk ULTRA PRO ultrasonic milk analyzer,
produced by Eon Trading INC in Bulgaria. It typically takes 1 minute per test. The lab staff usually tests
3 times per sample and records the last testing results to minimize the impact of the residual milk from the
previous samples.
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Figure A10: Bacteria Test

Notes: The bacteria is tested using the Resazurin Test (RT), in which a prepared solution of resazurin dye
is added to the milk sample. The color change after incubation indicates the milk quality: blue for good
quality, purple or pink for normal quality, and colorless for bad quality. In the RT test, 1 mL of 0.005%
resazurin dye solution is added to 10 mL of the milk sample in a test tube and then incubated in a water
bath at 37°C for 10 minutes. The test results are interpreted based on how quickly the color shifts, reflecting
bacterial activity. Bacterial levels are determined by comparing the color to a reference chart.
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Figure A11: Weighted Average Milk Quality over Time by Treatment Arms

(a) Added Water
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Notes: This figure shows the weighted average milk quality (weighted by individual farmers’ milk volumes)
across monitoring rounds for different treatment arms. The upper panel illustrates added water, while the
bottom panel depicts butterfat. These metrics are used to assess overall improvement within each treatment
group and to conduct a cost-efficiency analysis.
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Figure A12: Cumulative Distribution Function(CDF) of Endline Quality by Treatment Arms
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Table A1: Attrition Balance

=1 if Completed Endline Survey =1 if Completed Endline Milk Tests

(1) (2)

Panel A: Pooled Regression
Random Tests (β) 0.02 0.01

(0.04) (0.04)
Model Detection (γ) -0.01 0.04

(0.04) (0.04)

p-value:
β = γ 0.477 0.371

Observations 719 940
Control Mean of Depvar 0.80 0.68
Control SD of Depvar 0.40 0.47

Panel B: Interaction with Baseline Water by Individual Tests
Random Tests × Bad Water (β) -0.06 0.02

(0.07) (0.07)
Random Tests 0.04 -0.00

(0.05) (0.05)
Model Detection × Bad Water (γ) 0.11 0.01

(0.07) (0.07)
Model Detection -0.06 0.03

(0.05) (0.05)
=1 if Bad Water by Individual Tests 0.02 -0.00

(0.05) (0.05)
p-value:
β = γ 0.024 0.938

Observations 719 940
Control × Good Baseline Water : Mean 0.79 0.68
Control × Good Baseline Water : SD 0.41 0.47

Panel C: Interaction with Baseline Water by Model
Random Tests × Bad Water (β) 0.07 0.02

(0.07) (0.07)
Random Tests -0.02 -0.00

(0.06) (0.06)
Model Detection × Bad Water (γ) 0.05 0.10

(0.07) (0.07)
Model Detection -0.04 -0.02

(0.06) (0.06)
=1 if Bad Water by Model -0.02 -0.08

(0.05) (0.05)

p-value:
β = γ 0.760 0.309

Observations 719 940
Control × Good Baseline Water : Mean 0.80 0.73
Control × Good Baseline Water : SD 0.40 0.45

Notes: This table reports survey attrition and milk test attrition, along with balance tests across treatment arms
and by baseline quality levels. Panel A presents results from the estimating equation (2), while Panels B and C
report results from the estimating equation (3). For the regressors, “Bad Water” classifications are derived from
individual-level random tests in Panel B and from model detection in Panel C. “Bad Water” indicates the failure
to meet the KeBS standards for Added Water. All regressions include collection route-fixed effects. ***, **, and *
represent significance at 1%, 5%, and 10% respectively.

50



Figure A15: Farmers’ Milk Quality Training

Notes: Cooperatives contacted the regional Brookside trainers to provide training for farmers with low-
quality milk, focusing on improving butterfat and reducing bacteria levels. Attendance sheets were signed
by each participating farmer.
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Table A2: Treatment Effects on Investment in Butterfat

Concentrates Cost(USD)
in the Past 30 Days

Dry Matters Percentage
among the Total Feed

(1) (2)

Panel A: Pooled Regression
Random Tests (β) 2.79 -2.59

(3.09) (1.68)
Model Detection (γ) 2.70 -2.27

(3.12) (1.70)

p-value:
β = γ 0.978 0.850

Observations 574 574
Control Mean of Depvar 24.44 27.98
Control SD of Depvar 30.21 17.02

Panel B: Interaction with Baseline Butterfat by Individual Tests
Random Tests × Bad Butterfat (β) -6.97 2.09

(8.63) (4.69)
Random Tests 3.71 -2.75

(3.38) (1.84)
Model Detection × Bad Butterfat (γ) -10.54 4.20

(8.98) (4.88)
Model Detection 4.22 -2.84

(3.40) (1.85)
=1 if Bad Butterfat by Individual Tests 6.98 -3.92

(6.74) (3.67)
p-value:
β = γ 0.660 0.631

Observations 574 574
Control × Good Baseline Butterfat : Mean 24.44 28.47
Control × Good Baseline Butterfat : SD 30.21 17.56

Panel C: Interaction with Baseline Butterfat by Model
Random Tests × Bad Butterfat (β) -1.27 -6.12

(7.89) (4.28)
Random Tests 2.98 -1.45

(3.45) (1.87)
Model Detection × Bad Butterfat (γ) 1.87 0.58

(8.08) (4.38)
Model Detection 2.30 -2.36

(3.48) (1.89)
=1 if Bad Butterfat by Model -2.23 0.38

(5.60) (3.04)

p-value:
β = γ 0.701 0.131

Observations 574 574
Control × Good Baseline Butterfat : Mean 24.44 27.91
Control × Good Baseline Butterfat : SD 30.21 17.89

Notes: This table presents results from running equation (2) for Panel A, and equation (3) for Panel
B and Panel C. Regressions include baseline measurements of outcome, collection route fixed effects,
and baseline controls for the number of household members and the number of years keeping cattle.
For the regressors, “Bad Butterfat” classifications are derived from individual-level random tests in
Panel B and from model detection in Panel C. “Bad Butterfat” indicates the failure to meet the KeBS
standards for Butterfat. ***, **, and * represent significance at 1%, 5%, and 10% respectively.
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Table A3: Treatment Effects on Investment in Bacteria

=1 if Use Aluminium
Milk Cans

=1 if Mix Morning
and Evening Milk

=1 if Use Milking Jelly
after Milking

=1 if Use Different Towels
for Milking Different Cows

(1) (2) (3) (4)

Panel A: Pooled Regression
Random Tests (β) 0.02 -0.00 0.12** 0.08*

(0.04) (0.05) (0.05) (0.04)
Model Detection (γ) -0.01 0.04 0.08 0.04

(0.04) (0.05) (0.05) (0.04)

p-value:
β = γ 0.498 0.391 0.466 0.385

Observations 574 574 574 470
Control Mean of Depvar 0.74 0.41 0.57 0.73
Control SD of Depvar 0.44 0.49 0.50 0.45

Panel B: Interaction with Baseline Quality by Individual Tests
Random Tests × Bad Bacteria (β) 0.01 -0.00 0.00 0.11

(0.11) (0.12) (0.12) (0.11)
Random Tests 0.02 -0.01 0.11** 0.05

(0.05) (0.06) (0.06) (0.05)
Model Detection × Bad Bacteria (γ) -0.04 0.01 0.10 -0.02

(0.11) (0.13) (0.13) (0.11)
Model Detection 0.00 0.04 0.06 0.05

(0.05) (0.06) (0.05) (0.05)
=1 if Bad Bacteria by Individual Tests -0.05 0.05 0.04 0.00

(0.08) (0.09) (0.09) (0.08)
p-value:
β = γ 0.595 0.932 0.424 0.242

Observations 574 574 574 470
Control × Good Baseline Bacteria : Mean 0.74 0.39 0.57 0.76
Control × Good Baseline Bacteria : SD 0.44 0.49 0.50 0.43

Notes: This table presents results from running equation (2) for Panel A, and equation (3) for Panel B. Regressions include baseline measurements
of outcome, collection route fixed effects, and baseline controls for the number of household members and the number of years keeping cattle.
For the regressors, “Bad Bacteria” classifications are derived from individual-level random tests in Panel B. “Bad Bacteria” indicates the failure
to meet the KeBS standards for Bacteria. ***, **, and * represent significance at 1%, 5%, and 10% respectively.
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B Discussion of Welfare

The selection criteria for the partner cooperatives in this study include the willingness to set
up the traceability systems and, most importantly, the agreement that they would not take
actions that might hurt farmers once I share the quality information. Both cooperatives I
recruited to the study have promised these at the beginning of the project, although the
research team cannot fully control how the cooperatives react to the quality information.
Therefore, I recognized in the IRB27 application that, in the worst case, there is a risk for
farmers to be rejected by cooperatives because of the low milk quality.28 I have also fully
notified farmers of these potential risks, and farmers’ participation in the study is voluntary.
I asked for consent from farmers for the milk testing29 and surveys separately. I have also
informed farmers that they could choose to drop out anytime during the study. As a result,
30 percent of farmers dropped out of the testing halfway.

At the same time, the research team closely monitored the cooperatives’ responses after each
round of information sharing. I observed that cooperatives started training low-quality (but-
terfat and bacteria) farmers and talked to farmers about water adulteration since I started
the information sharing. Both cooperatives chose to have a conversation with low-quality
farmers first without any real consequences during the first two rounds of quality monitoring
and information sharing. The cooperatives withheld a portion of the milk payment from a
small group of farmers who repeatedly diluted their milk with water after the third round of
information sharing. Once I observed this, I stopped the information sharing immediately30.
After the conversation with the cooperatives, both agreed to fully restore all payments to
the farmers. The ultimate goal of cooperatives is to let members take milk quality seriously,
not necessarily to really punish farmers.

Note that any information-revealing study31 aiming to reduce market inefficiencies will un-
avoidably lead to the reallocation of the welfare of involved parties, and the more informed

27The experiment and data collection were approved by the UCSC IRB, the International Livestock
Research Institute (ILRI) Institutional Research Ethics Committee (IREC), as well as the in-country research
permit from the National Commission for Science, Technology, and Innovation (NACOSTI).

28In reality, the cooperatives have never rejected farmers’ milk because of information sharing in this
study since the information sharing happened after they had already purchased the milk from farmers.

29Originally, I was concerned that the consent for milk testing would create selection issues and have
unbalanced treatment and control groups, but a trial with ten good-type farmers and ten bad farmers in the
pilot showed that the consent rate was almost 90%, and it’s balanced between good- and bad-type farmers,
then I included the information in the IRB application and rolled out to the full project. The attrition
balance for the formal project can be found in Table A1.

30The original plan was to share four rounds of information in total, then there would be a final quality
check, but due to the observed incidence, I did not share the fourth round quality monitoring results, and I
used the fourth round results as the final outcomes of the project.

31Including Kelley et al. (2024) about installing GPS trackers on Kenyan matatu to inform the matatu
owners of the hired drivers’ driving behavior, as well as the companion paper Lane et al. (2024), which
informs the passengers about drivers’ driving behavior.
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agent will have less information rents as a result of information revealing in the short run.
However, this does not have to be the case, nor does it suggest they will be worse off in the
long run. Farmers can either increase their income by diluting milk with water or achieve
the same result by stopping the practice, which benefits everyone with higher prices. By
improving milk quality, the cooperatives can earn a 6% price bonus, which can be passed on
to the farmers. Choosing to stop adding water is a simple change that can happen quickly.
In the long run, farmers whose milk is of insufficient quality might not be aware of their milk
quality and simply do not know how to produce high-quality milk. It is a good chance to
get follow-up guidance from the cooperatives. It is reasonable to believe that cooperatives
will give them guidance and even pay them bonuses if the milk quality is improved. In fact,
I have already observed that our partner cooperatives increased the credit limits for those
farmers who have never added water to the milk and need money to buy animal feeds, as the
cooperative believes that these farmers are more trustworthy and will be more likely to pay
back the loans. The cooperative is also willing to see an increase in the quantity of “good”
type of milk. In summary, farmers could benefit from the follow-up guidance, potential
quality bonuses, and improved access to credit via built trust in the long run.

It is also important to note that if the milk quality is “bad,” both farmers and cooperatives
should know it, as bad milk with quality below standards set by the KeBS is not allowed to
be traded by law, and it will bring a risk to public health. Even for added water alone, there
is a significant positive correlation between adding water and bacteria, as is shown in Table
A4, as the water added to the milk would not necessarily be clean, purified water. In Table
A4, Panel A indicates that a 1% increase in added water percentage is associated with a 1%
higher likelihood of the milk being classified as “Bad Bacteria” according to national KeBS
standards, a relationship that is statistically significant at the 1% level. Panel B shows that
being classified as “Bad Quality” in terms of added water is associated with a 2% higher
likelihood of the milk being classified as “Bad Bacteria”.

Farmers sell the milk not only to cooperatives but also to their neighbors and local schools.
There is a public health concern for this unpasteurized milk to be traded and consumed in
the local area. Milk consumers will benefit from the improved milk market in the long run.
At the endline of the project, 99% of farmers agreed that milk should always be tested by
buyers, and 90% of farmers agreed that milk should be paid based on quality, as is shown in
Table A5.
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Table A4: Correlation between Added Water and Bacteria

=1 if Bad Bacteria

(1)

Panel A: Absolute Level of Added Water
Added Water (%) 0.01***

(0.00)

Observations 3574
Mean of Depvar 0.14
SD of Depvar 0.35
Panel B: Bad Added Water Classification
=1 if Bad Added Water 0.02*

(0.01)

Observations 3574
Control Mean of Depvar 0.13
Control SD of Depvar 0.34

Notes: Pooled all four rounds of individual milk samples. Panel A
indicates that a 1% increase in added water percentage is associated
with a 1% higher likelihood of the milk being classified as “Bad Bacteria”
according to national KeBS standards, a relationship that is statistically
significant at the 1% level. Panel B shows that being classified as “Bad
Quality” in terms of added water is associated with a 2% higher likelihood
of the milk being classified as “Bad Bacteria”. ***, **, and * represent
significance at 1%, 5%, and 10% respectively.

Table A5: Farmers’ Perception Regarding Milk Tests and Quality Based Payment

Mean SD N
Milk Should Always be Tested by Buyers 0.99 0.10 574
Milk Price Should be Based on Quality (Baseline) 0.61 0.49 719
Milk Price Should be Based on Quality (Endline) 0.90 0.29 574
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C Technical Appendix

As described in the main text, I use Bayesian statistical models to predict milk quality. This
appendix provides the details for estimation. According to Bayes’ Theorem, the posterior
distribution for the milk quality parameter ρ follows:

f(ρ | data) =
f(data | ρ)f(ρ)

f(data)
,

where f(data | ρ) is the Likelihood function, f(ρ) is the prior distribution for the parameter,
and f(data) is the marginal distribution of the data. I will explain each component of
the Bayesian model for different quality parameters one by one. The basic idea is that
we incorporate prior information for milk quality across different farmers and use their
contribution toward different aggregate cans and the quality measurements of these cans to
infer individual quality averages ex-post.

C.1 Model Setup for Added Water

Let us assume there are n different farmers, and the added water in their individual milk is
represented by the parameters ρindiv

1 , ρindiv
2 , . . . , ρindiv

n .

C.1.1 Priors for Added Water

The individual added water level, ρindiv
i , is non-negative by definition. Based on the his-

togram of the observed data in Figure A16, I model the potential prior distribution of added
water using the half-normal distribution:

ρindiv
i ∼ Normal+(0, (σindiv)2)
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Figure A16: Added Water Distribution (Pooled All Rounds)

54% farmers have more than 4% added water
70% cans have more than 4% added water
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Notes: This figure shows the distributions of added water at both the farmer and can levels. The added
water is non-negative, and its distribution at the farmer level closely resembles a Half-Normal distribution,
which I have selected as the prior for our analysis. The national KeBS standards require that added water
must be less than 4%.

Mathematically, the probability density function (PDF) of the positive half-normal distribu-
tion is given by:

f(ρindiv
i ; 0,σindiv) =

{ √
2

σindiv
√
π

exp
(
−

(ρindiv
i )2

2(σindiv)2

)
, ρindiv

i ⩾ 0

0, otherwise.

Without additional information, the prior of σindiv is chosen to be an inverse gamma dis-
tribution:

σindiv ∼ InvGamma(3, 1)

This is an innocuous assumption that simply assigns a random starting value for the disper-
sion in the Half-Normal PDF.

C.1.2 Likelihood for Added Water

Theoretical Can Level Quality
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Given the share of the individual farmer i’s milk in the can j, wdata
ij , the aggregated added

water level, ρcan
j , is a weighted average of the individual added water from mj different

farmers’ milk in can j:

ρcan
j =

mj∑
i=1

wdata
ij ρindiv

i

Thus, for all the aggregated cans, we have:

ρcan
aw,J×1 = WJ×nρ

indiv
aw,n×1,

where WJ×n =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

... . . . ...
w(J)1 w(J)2 . . . w(J)n

. Here, W is the weight matrix with J rows

since we have J cans, and n columns as we have n different farmers. ρindiv
aw,n×1 =


ρindiv
aw,1

ρindiv
aw,2
...

ρindiv
aw,n

,

which is the individual added water(aw) matrix with n rows. ρcan
aw,J×1 =


ρcan
aw,1

ρcan
aw,2
...

ρcan
aw,J

, which

is the can level added water matrix with J rows.

Data Model

The aggregated can-level added water, ydata
j , is typically observed with measurement errors

around its theoretical mean ρcan
j . Further, since ydata

j is also non-negative, I model the
distribution of ydata

j as a normal distribution truncated below from zero, with location
parameter the theoretical mean ρcan

j and scale parameter the can-level measurement error
σcan:

ydata
j ∼ Normal+(ρcan

j , (σcan)2),

where ρcan
j = E[ydata

j ] =
∑mj

i=1 w
data
ij ρindiv

i . σcan is assigned an inverse gamma prior:

σcan ∼ InvGamma(3, 1)
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Given the observed ydata
j , known weights wdata

ij , the likelihood function below informs us
how probable the observed aggregated added water is for different combinations of individual
densities ρindiv

1 , ρindiv
2 , . . . , ρindiv

n :

L
(
Ydata | ρindiv

1 , ρindiv
2 , . . . , ρindiv

n

)
=

J∏
j=1

L
(
ydata
j | ρindiv

1 , ρindiv
2 , . . . , ρindiv

n

)

=
∏J

j=1

1
σcan

√
2π

e

− 1
2

ydata
j

−ρcan
j

σcan

2

1−Φ

(
−ρcan

j
σcan

) =
∏J

j=1

1
σcan

√
2π

e

− 1
2

ydata
j

−
∑mj

i=1 wdata
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C.1.3 Posteriors for Added Water

Given the above setup, Bayes’ theorem gives:
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For the posterior full conditional distribution of each ρindiv
i , we have the following:
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where p and k mean that individual farmer i show up in can p, can p+1, ..., can k. Note that
any individual i showed up at least one time, and individual i ′s milk was divided into (k+1)

different aggregated containers on that single day. We also have Φ

(
−

∑mj
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data
ij ρindiv
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)
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−∞ ϕ(u)du, ϕ(u) is the pdf of standard normal distribution: ϕ(u) = 1√
2πe

− 1
2u

2 .

C.2 Estimation and Model Performance for Added Water

C.2.1 Estimation - Hamiltonian Monte Carlo (HMC) for Added Water

I implement the Bayesian model using RStan, which uses a modified version of the Hamil-
tonian Monte Carlo (HMC) algorithm32 for Bayesian Inference.

I obtained point estimates and credible intervals for each ρindiv
i , σindiv, and σcan. I attach

the model estimation based on the modified Hamiltonian Monte Carlo (HMC) simulations33

in Figure A17. I have also compared the Bayesian point estimates(posterior mean) to the
Individual test results among 940 dairy farmers from cooperatives in two different counties
in Figure A18.

32Metropolis-Hastings within Gibbs Sampling will also work in this setting.
33Specifically, No-U-Turn sampler.
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Figure A17: Hamiltonian Monte Carlo (HMC) Simulations for Added Water Estimation

(a) Panel A: Trace Plot
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(b) Panel B: Caterpillar Plot
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Notes: This figure presents the model estimation results based on the modified Hamiltonian Monte Carlo
(HMC) simulations. Panel A displays the trace plots of the Markov chains, illustrating the time series of
posterior draws. The first 1,000 draws, shaded in gray, represent the warmup phase, while the subsequent
1,000 draws from the post-warmup phase are used to approximate the posterior distribution of the parameter.
Four independent chains were used, and their mixing was verified to ensure proper convergence during the
post-warmup phase. Panel B presents the point estimates (black dots) alongside the posterior credible
intervals, with the inner interval representing 80% credibility and the outer interval representing 95%, to
illustrate the uncertainty in the estimates.
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Figure A18: Comparison between Model Prediction and Individual Tests on Added Water

Correlation = 0.75***
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Notes: This figure compares Bayesian point estimates of average added water in the milk over the monitoring
period with random individual test results. Both the X-axis and Y-axis represent absolute quality levels
measured as percentages. The Pearson correlation coefficients between the Bayesian point estimates and the
individual test results are calculated, pooling data across all four rounds of quality monitoring. ***, **, and
* represent significance at 1%, 5%, and 10% respectively.

C.2.2 Posterior Probability Classification for Added Water

I then use the entire posterior distribution to classify farmers into three categories based
on the minimally required standards posted by the government (Kenya Bureau Of Stan-
dards (KEBS)) and the processors’ quality rewarding standards. To illustrate the idea, let
f
(
ρindiv
i

)
denote the posterior density function for farmer i. The probabilities for each tier34

are calculated as follows:

- Probability of “Bad” Tier: PBad (i) =
∫∞
θhigh

f
(
ρindiv
i

)
dρindiv

i

- Probability of “Normal” Tier: PNormal (i) =
∫θhigh
θlow

f
(
ρindiv
i

)
dρindiv

i

34Note that for added water, the lower, the better.

63



- Probability of “Good” Tier: PGood (i) =
∫θlow

0 f
(
ρindiv
i

)
dρindiv

i

where, θlow = 2%, the processor’s standards for quality rewarding, and θhigh = 4%, the
minimal required standards by the KeBS.

I compare the predicted categories and categories based on a one-time test in the confusion
matrix below and calculate the accuracy rate and precision rate in Table A6. In Figure
A19, I plot the one-time individual test results against the probabilities calculated based on
Bayesian posterior distribution based on the formula above. The x-axis for the upper picture
in Figure A19 is for the Probability of “Bad” Tier, and the x-axis for the lower picture in
Figure A19 is for the Probability of “Good” Tier.

Table A6: Confusion Matrix - Added Water

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 436 20 390
Normal 192 35 365

Bad 176 46 1,898
Notes: Actual Numbers

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 51.54%
Normal 5.91%

Bad 89.53%
Notes: Accuracy (Row Percentage)

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 54.23%
Normal 34.65%

Bad 71.54%
Notes: Precision (Column Percentage)

Notes: This table presents the confusion matrix for added water predictions, following the standard method
for evaluating classification models in the field of machine learning. The upper panel displays the actual
counts, the middle panel calculates accuracy using row percentages, and the bottom panel calculates precision
using column percentages. It is important to keep in mind that farmers’ milk quality is not set in stone, and
one-time tests are not golden benchmarks to test the model’s performance. As is discussed in section 2.2,
one-time tests can only reflect the perfect information for the day when farmers’ milk samples have been
taken and tested, but not on other days. In contrast, Bayesian models on aggregated can-level do not give
perfect information for any single day. They provide information about overall performance, but they could
provide noisy signals.
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Figure A19: Probability of High and Low Added Water
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Plot of Individual Added Water Test against Bayesian Probability

0

20

40

60

80

24

In
di

vi
du

al
 A

dd
ed

 W
at

er
 T

es
t

0 .2 .4 .6 .8 1
Probability of Added Water being Less than 2 Percent

Plot of Individual Added Water Test against Bayesian Probability

Notes: This figure illustrates the relationship between one-time individual test results and the probabilities
derived from the Bayesian posterior distribution, calculated using the formula in Section C.2.2 for added
water. Note that the upper and lower panels are not flips of each other, as there is also a probability for the
“Normal” category, which represents added water levels between 2% and 4%.
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For the interpretation of Figure A19 and Table A6, it is important to keep in mind that
farmers’ milk quality is not set in stone, and one-time tests are not golden benchmarks to
test the model performance. As is discussed in section 2.2, one-time tests can only reflect
the perfect information for the day when farmers’ milk samples have been taken and tested,
but not on other days. In contrast, Bayesian models on aggregated can-level do not give
perfect information for any single day. They provide information about overall performance,
but they could provide noisy signals.

In fact, another way to test model performance is to compare the expected number(from the
model)35 of farmers whose milk fails the quality standards if showing up on random days
to test with the number of farmers who actually failed the quality standards based on that
random sampling and individual tests. I did the exercise at baseline, and the model predicts
449 out of 940 farmers would fail the test and the individual tests have found 444 farmers
who actually failed the quality standards, which is very close to the model prediction.

C.3 Model Setup for Butterfat

C.3.1 Priors for Butterfat

The model for butterfat is almost the same, except that the priors for butterfat and added
water are different. Unlike added water, which is a non-negative value, butterfat is a strictly
positive value unless the milk is 100% pure water, so I changed the priors for butterfat to
capture this.

Let us keep the notation of the quality parameter the same, and the distribution of the
butterfat for both individual levels and can levels are shown in Figure A20:

35Summing up the Probability of “Bad” Tier across all individual i.
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Figure A20: Butterfat Distribution (Pooled All Rounds)
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Notes: This figure shows the distributions of butterfat at both the farmer and can levels. The butterfat is
strictly positive, and its distribution at the farmer level aligns well with a Gamma distribution, which I have
chosen as the prior for this parameter. The national KeBS standards require that butterfat must exceed
3.25%.

The individual butterfat level, ρindiv
i , is strictly positive, and based on the histogram of

the observed data in Figure A20, I model the potential distribution of butterfat using the
gamma distribution:

ρindiv
i ∼ Gamma (αprior,βprior)

The PDF is given by:

P(ρindiv
i ) =

 βα

Γ(α)
(ρindiv

i )α−1 exp(−βρindiv
i ), ρindiv

i > 0

0, otherwise,

where α denotes the shape parameter, and β is the rate parameter; The gamma function is
defined as:

Γ(α) =

∫∞
0
yα−1e−ydy

Since there are two parameters, I fix the α to be the same as the shape parameter fitted on
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the gamma distribution using pilot data, and then the rate parameter β is chosen to be an
inverse gamma distribution: β ∼ InvGamma(3, 1).

C.3.2 Likelihood for Butterfat

I modeled the likelihood of butterfat the same as I modeled for added water in section C.1.2:
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σcan is assigned an inverse gamma prior:

σcan ∼ InvGamma(3, 1)

C.3.3 Posteriors for Butterfat

Given the above setup, Bayes’ theorem gives:
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For the posterior full conditional distribution of each ρindiv
i , we have the following:
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where p and k mean that individual farmer i show up in can p, can p+1, ..., can k. Note that
any individual i showed up at least one time, and individual i ′s milk was divided into (k+1)

different aggregated containers on that single day. We also have Φ
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2 .

C.4 Estimation and Model Performance for Butterfat

C.4.1 Estimation - Hamiltonian Monte Carlo (HMC) for Butterfat

I obtained point estimates and credible intervals for each ρindiv
i , β, and σcan. I attach the

model estimation based on the modified Hamiltonian Monte Carlo (HMC) simulations36 in
Figure A21 and compare the Bayesian point estimates(posterior mean) to the Individual test
results among 940 dairy farmers from cooperatives in two different counties in Figure A22.

36Specifically, No-U-Turn sampler.
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Figure A21: Hamiltonian Monte Carlo (HMC) Simulations for Butterfat Estimation

(a) Panel A: Trace Plot
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(b) Panel B: Caterpillar Plot
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Notes: This figure presents the model estimation results based on the modified Hamiltonian Monte Carlo
(HMC) simulations. Panel A displays the trace plots of the Markov chains, illustrating the time series of
posterior draws. The first 1,000 draws, shaded in gray, represent the warmup phase, while the subsequent
1,000 draws from the post-warmup phase are used to approximate the posterior distribution of the parameter.
Four independent chains were used, and their mixing was verified to ensure proper convergence during the
post-warmup phase. Panel B presents the point estimates (black dots) alongside the posterior credible
intervals, with the inner interval representing 80% credibility and the outer interval representing 95%, to
illustrate the uncertainty in the estimates.
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Figure A22: Comparison between Model Prediction and Individual Tests on Butterfat

Correlation = 0.62***
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Notes: This figure compares Bayesian point estimates of average butterfat in the milk over the monitoring
period with random individual test results. Both the X-axis and Y-axis represent absolute quality levels
measured as percentages. The Pearson correlation coefficients between the Bayesian point estimates and the
individual test results are calculated, pooling data across all four rounds of quality monitoring. ***, **, and
* represent significance at 1%, 5%, and 10% respectively.

C.4.2 Posterior Probability Classification for Butterfat

Likewise, I use the entire posterior distribution to classify farmers into three categories based
on the minimally required standards posted by the government (KEBS) and the processors’
quality rewarding standards for butterfat. The probabilities for each tier37 are calculated as
follows: - Probability of “Bad” Tier: PBad (i) =

∫θlow
0 f

(
ρindiv
i

)
dρindiv

i

- Probability of “Normal” Tier: PNormal (i) =
∫θhigh
θlow

f
(
ρindiv
i

)
dρindiv

i

- Probability of “Good” Tier: PGood (i) =
∫∞
θhigh

f
(
ρindiv
i

)
dρindiv

i ,

37Note that for butterfat, the higher, the better.
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where θlow = 3.25%, which is the minimal required standards by the KeBS; θhigh = 3.8%,
which is the processor’s standard for quality rewarding.

I compare the predicted categories and categories based on a one-time test in the confusion
matrix below and calculate the accuracy rate and precision rate in Table A7. Again, it is
important to keep in mind that farmers’ milk quality is not set in stone, and one-time tests
are not golden benchmarks to test the model performance. In Figure A23, I plot the one-
time individual test results against the probabilities calculated based on Bayesian posterior
distribution based on the formula above. The x-axis for the upper picture in Figure A23 is
for the Probability of “Bad” Tier, and the x-axis for the lower picture in Figure A23 is for
the Probability of “Good” Tier.

Table A7: Confusion Matrix - Butterfat

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 1,302 327 104
Normal 358 447 179

Bad 181 227 433
Notes: Actual Numbers

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 75.13%
Normal 45.43%

Bad 51.49%
Notes: Accuracy (Row Percentage)

Individual Test

P
re

di
ct

io
n Good Normal Bad

Good 70.72%
Normal 44.66%

Bad 60.47%
Notes: Precision (Column Percentage)

Notes: This table presents the confusion matrix for butterfat predictions, following the standard method for
evaluating classification models in the field of machine learning. The upper panel displays the actual counts,
the middle panel calculates accuracy using row percentages, and the bottom panel calculates precision using
column percentages. It is important to keep in mind that farmers’ milk quality is not set in stone, and
one-time tests are not golden benchmarks to test the model’s performance. As is discussed in section 2.2,
one-time tests can only reflect the perfect information for the day when farmers’ milk samples have been
taken and tested, but not on other days. In contrast, Bayesian models on aggregated can-level do not give
perfect information for any single day. They provide information about overall performance, but they could
provide noisy signals.
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Figure A23: Probability of High and Low Butterfat
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Plot of Individual Butterfat Test against Bayesian Probability
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Plot of Individual Butterfat Test against Bayesian Probability

Notes: This figure illustrates the relationship between one-time individual test results and the probabilities
derived from the Bayesian posterior distribution, calculated using the formula in Section C.4.2 for butterfat.
Note that the upper and lower panels are not flips of each other, as there is also a probability for the “Normal”
category, which represents butterfat levels between 3.25% and 3.8%.
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